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The paper presents a new fast algorithm to calculate periodic auto- and 
crosscorrelation functions of Frank sequences. It is based on a 2-dimensional representation 
of the sequences and a combination of the spectral and direct correlation function calculation 
methods. In this case the computational accuracy is enhanced and the number of the required 
complex operations is reduced twice. 

INTRODUCTION 

For the recent 30 years intensive research activities have been conducted globally in the 
field of the theory and practical application of spread-spectrum signals. Radio 
communication, navigation, radar, information protection, wireless computer network, 
spectrometry systems – this is far from being a complete list of broadband signals 
applications. Their potential application in hydroacoustics is of special interest. 

Multipath and nonstationary nature of the hydroacoustic channel makes solution of the 
problems related to data transmission noise immunity, navigation and detection of various 
underwater objects rather complicated. Correlation and statistic properties of broadband 
signals allow minimizing the impact of negative factors. First of all we speak about a 
capability of fast and accurate communication channel measurements and creation of adaptive 
hydroacoustic systems. Owing to ideal correlation properties it is possible to accumulate 
energy of signals, arriving by individual beams. In the location systems there appears a 
capability of increasing the detection range of underwater objects, of improving the 
equipment resolution and reduction of demasking emissions. 

One of the techniques to extend the signal spectrum is based on using pseudo-random 
sequences. The best known, well studied and widely applied are binary sequences, such as M-
sequences, Gold, GMW, Kassamy, and Golay sequences. Efficient digital processing 
algorithms were developed for these sequences. Complex sequences have been acquiring ever 
greater attention of scientists recently. They are employed to generate multi-phase signals, 
characterized by ideal correlation properties. Among them Frank sequences are distinguished. 
They are easy to generate and have a minimal number of various phases. As of today fast 
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processing algorithms for Frank sequences have not been sufficiently studied. In what follows 
we shall describe a correlation algorithm that requires lesser number of arithmetic operations 
comparing to a classical correlation processing algorithm based on the fast Fourier transform. 

1. FRANK SEQUENCES 

Frank sequences [1] are multi-phase sequences having periodic autocorrelation function 
(PACF). They are determined for the case when their length is , where  is any 
integer, and they are formed by means of DFT matrix of the dimension  Let 

 be a Frank sequence of the length  We shall now form the matrix  
pursuing the following rule: 
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where:  stands for the line number and 1,...,1,01 −= mi 1,...,1,02 −= mi  is the column 
number in the matrix. 

As a result we have  
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The Frank sequence is formed by means of sequential reading the line of the matrix . 
In general it appears as follows: 
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Its each symbol may be calculated with the help of an analytic form  

ili wa =       (4) 
where  stands for the parameter dependent on the symbol number in the sequence 

 and determining its actual values of 
il

}{ ia 21iili = , and  is interrelated with through the 
expression . 
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According to the definition the amplitude value of  is 1, hence, w 1=ia  for all values 
of . Elements of  are the elements of the matrix , therefore its alphabet consists of the 

multitude such as , and a signal, generated on the basis of the Frank sequence 
shall have only m  various phases. It is well-known that the DFT spectrum  shall be 
uniform, for this reason its PACF shall be ideal. 
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Sequences derived from the modified matrix F  represent generalization of the Frank 
sequences [2, 3]: 

lklk diagDFPF =,      (5) 

where  is the permutation matrix of the dimension kP mm× , ,  is 

formed by the vector  1

Kk ,...,1= ldiagD

],,...,,,1[ 121 −= mlll wwwD ,...,0
1

−= mli , Ll ,...,1= . 

Parameters K  and  determine the general number of various Frank sequences, that is 
 and can be calculated using formulas 

L
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Hence, !2mmN m−= . 
As an example we shall form the Frank sequence for ,16=n using the DFT matrix of 

the  dimension, exchange and diagonal matrices: 44×=×mm
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Then, taking into consideration, that jjw −=⎟
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and the Frank sequence  
{ } ].,,1,1 ,1 , ,1 ,1, ,1 ,1 , ,1,,1[, jjjjjja lk

i −−−−−−=       (9) 
The calculation results for PACF of the sequence obtained are given in Figures below. 
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Fig.1 Periodic autocorrelation function for the formed Frank sequence 

 



2. COMPUTATIONAL COMPLEXITY OF CORRELATION FUNCTIONS 

In case of digital signal processing the complexity of the algorithm, usually estimated 
by the number of arithmetic operations required for its implementation, is of crucial 
significance.  

Algorithm 1. 
Algorithm 1 is the most labor-intensive. The correlation function is calculated directly 

by multiplying the vector  formed by the symbols of the sequence ,a { }ia  by the matrix , 
composed of cyclic shift symbols of the sequence 

B
{ }ib . The length of both the sequences is , 

and the dimension of the  matrix is 
n

B nn× . Then the correlation vector R  may be determined 
by the below formula 

BaR = .      (10) 
To multiply the vector by the matrix it is required to carry out  of multiplications and 

 summations. If the correlation function is calculated for the Frank sequences, all the 
operations are complex. 

2n
)1( −nn

Algorithm 2. 
Processing of the correlation function in the spectral domain saves a great number of 

arithmetic operations. Let the matrix  of the Fourier transform have the dimension   F nn×
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where:  stands for the line number and 1,...,1,01 −= ni 1,...,1,02 −= ni  is the column 
number in the matrix. 

Then  
   ( )T)()(1 FbFaFR ×= −      (12) 

here  is the matrix of the Fourier inverse,  represents the matrix conjugated 
with the matrix , and ×  stands for the symbol of symbol-by-symbol vector multiplication. 
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X

As it follows from the expression, the Fourier transform needs to be calculated three 
times and  complex multiplication be made. Usually Fb  is calculated in advance, only 
once, therefore correspondent operations of estimating the complexity shall further be 
neglected. The complexity of the algorithm is very much dependent on the sequence length 
and shall be minimal if . In this case it will require no more than  of complex 
summations and not more than 

n

kn 2= nk2
)1(2 +kn  multiplications of complex numbers.  

The block diagram  of the algorithm is shown in Fig. 2. 
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Fig.2 Block diagram  of algorithm 2 
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3. MAIN ALGORITHM 

Algorithm 3 (2-dimensional algorithm). 
This algorithm is a kind of the spectral method (Algorithm 2), which employs the 

Fourier transform of the dimension mm×  ( nm = ) and a 2-dimensional representation of 
the sequences {  and {  [4]. Let  be an }ia }ib 1F mm× -dimensional Fourier transform matrix. 
We shall now introduce an additional matrix  of the dimension V mm×  
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where:  is the line number and 1,...,1,01 −= mi 1,...,1,02 −= mi  is the column number in 
the matrix . V

Now we shall determine the operation of direct multiplication of matrices DCE ×=  
using the following method: 
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We shall rewrite the sequences { }ia  and { }ib  in a form of mm× -dimensional matrices 
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Then we shall calculate intermediate matrices  and , DFT spectral coefficients 
of the sequences {  and {  being the elements thereof  
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Using the 2-dimensional inverse DFT we shall obtain a correlation matrix 
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It is well-known that there is the following interrelation between  and  1R R  
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That is  and  1R R , are 2-dimensional and one-dimensional representations of one and 
the same multitude of values of the mutual correlation function for the sequences { , }ia { }ib  
correspondingly. 

To analyze the algorithm we shall now represent it in a parallel form  
( ( ( )))( ) ( )   111 ∗− − −   ,  TbFvTTFwTaFvTTFw ttbtta ××= batt wwTFvTTFR , (18) ×=×= , 

where  stands for the exchange matrix,  is the column vector, formed by the 
sequential account of columns in the matrix V , 
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1
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tt   represents the 

unitary matrix of the order m , and symbol 
E

⊗  means Kronecker tensor product of matrices. 
The block diagram of algorithm 3 in a parallel form as per (14), (15) and (18) is shown 

in Fig. 3. 
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Fig.3 Block diagram of algorithm 3 

 
Immediate calculation of the number of arithmetic operations suggests, that in terms of 

computational complexity algorithms 2 and 3 are equivalent. 
Algorithm 4. 
For the optimization purposes of Algorithm 3 we shall now consider its central part, 

where calculations are to be made according to formulas (18). We shall designate 
, ( ) (      ,  f TbFvTBTaFvTA ttf ×=×= )    , ftbfta BTFwATFw ==  and then 

( )  1 ∗− ×= batf wwTFR , ( )  11
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The inner part is composed of the following operations  
   , ftbfta BTFwATFw ==     (19) 

( )  1 ∗− ×= batf wwTFR .     (20) 

These expressions describe computation of the mutual correlation function  for the 

sequences  and by means of the discrete Fourier transform. Fig. 4 plots the block 
diagram of Algorithm 3 in a parallel form as per (19) and (20). 
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Fig.4 Block diagram  of the modified Algorithm 3 

fR  may be calculated by direct multiplication of the vector  by the matrix В 

composed of  cyclic shifts of the sequence  
aw 

m bw  

aBwR = .      (21) 
In a general case this will require huge computational resources, if compared to 

Algorithm 2. If the sequence  has many zeros, this method is likely to be much simpler.  aw
It follows from the Fran sequence algorithm, that the vector A  is composed out of n 

divergent lines of an orthogonal matrix F . Therefore the product  represents a vector, 

having only  nonzero values. And each fragment of  contains only one nonzero value. 
Hence, calculating (21) will involve a cyclic shift of each of  sequence fragments, and 
then multiplying it by .   

 ft AF
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For the purposes of further simplification of the algorithm we should merge 

multiplications  by , and  bw v  1  −v ∗
aw and perform only one process of multiplying by an 

equivalent matrix . As a result we shall receive algorithm 4, its block diagram shown in Fig. 
5. 

P

The 2-dimensional algorithm obtained is constituted of the following stages: 
1. Transforming the vector (the sequence) into a 2-D mm× -dimensional matrix  
2. Calculating the DFT for the matrix columns; 
3. Transposing the DFT spectrum matrix; 
4. Performing cyclic shifts in columns; 
5. Multiplying by the equivalent matrix; 
6. Matrix transposition; 
7. Computing the inverse DFT for the columns; 
8. Transforming the correlation matrix into the vector (sequence). 

 



 
Fig.5 Block diagram  of Algorithm 4 

 
Immediate calculation suggests that for implementing Algorithm 4 it is required to 

count  DFT of m2 mm×  dimension and to perform no more than  intermediate complex 
multiplications. In such a way it is possible to reach a double-ply reduction in the number of 
the operations comparing to algorithm 2. 

n

4. SIMULATION 

Simulation of the algorithm developed to calculate the Frank sequence correlation 
functions was performed in the MatLab environment. The objective of this simulation was to 
demonstrate the operability of the algorithm, to show that a new algorithm is by no means 
poorer in terms of noise immunity if compared to the conventional correlation algorithms. In 
addition it enabled to solve an applied task of automating the algorithm synthesis process for 
arbitrary-length sequences and random exchange and diagonal matrices, modulating the 
sequence. 

 
Fig.6 Software model 

The software model contains the Frank sequence generator and two processing paths. 
The first path contains a software processor that implements the conventional PACF 
computation scheme – algorithm 2. The second path is programmed to realize a new 2-D 
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algorithm – FFT (algorithm 4). The processing results from the two paths are compared in a 
comparator. 

To make it visually clearer the algorithm models are equipped with a simulator unit of 
the interference multi-beam channel. A three-beam channel model is employed for the 
simplicity purposes. A relative signal delay from different beams is divisible into the length of 
a single symbol in the Frank sequence. The adder performs weighing up of signals from 
different beams and of noise. 

Fig. 7 reviews the calculation results for the cross-correlation function of a signal, 
composed of three Frank sequences 1024 in length, with relative delays of 150, 200, 500 
symbols and also of a non-delayed Frank sequence. Fig. 8 contains the results of similar 
calculations in presence of noise. 

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200
Periodic crosscorrelation

 
Fig.7 Results of the mutual correlation function calculation for an noise-free signal 
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Fig.8 Mutual correlation function of a signal in presence of noise 



 
Simulation proved that both algorithms are completely equivalent and have identical 

noise immunity. 

5. CONCLUSIONS 

The paper analyzes computation techniques of Frank sequences correlation functions. It 
has been suggested to employ a 2D fast Fourier transform algorithm for the spectral method, 
thus eliminating excessive calculations. With the noise immunity preserved a new algorithm 
is twice as superior as the conventional one. In addition the computational accuracy is 
improved owing to a reduction in the number of complex multiplications. Its practical 
implementation does not seem difficult. Along with hydroacoustics the algorithm described is 
well-suited for application in wireless broadband communication systems and channel 
division communication systems. 
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