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This paper presents the idea and methods of approximation of underwater channel 
impulse response by non-orthogonal functions. The family of functions that correctly estimate 
response of underwater channel is chosen. For these functions, method of calculation of 
parameters and coefficients is introduced. Besides that, two examples are presented. The first 
one is the approximation of response in deep reservoir, the second one is approximation of 
response in shallow reservoir, where appear problems of reflections from surface of water 
and bottom of reservoir. 

INTRODUCTION 

In the process of signal transmission, it is important to find suitable representation of the 
impulse response of transmission channel, which allows to describe very easily the process of 
transmission. In paper [5] response to a special kind of functions was presented. 
Unfortunately the result was very complicated. Impulse response can be obtained as a result 
of measurements and can be representated in a form of samples. The next step is to gain 
mathemathical interpretation. The problem is to choose appropriate approximation function.  
Commonly used cosinus and sinus functions or Chebyshev polynomials fulfill their role very 
well. Unfortunately to achieve satisfying approximation a notable number of approximating 
functions need to adopted. This leads to complication of mathematical representation and 
handicaps following physical realisation as well as further process of mathemathical analysis. 
In publication [1] approximation of underwater channel impulse response in acoustic 
transmission in deep waters with usage of Chebyshev and Laguerre polynomials was 
suggested. Correct estimation of channel response was obtained by the application of several 
approximating functions. It is too many, that transmission system could perform properly with 
expected data processing rate and low level of structure complicity. It is important to find 
such a functions, which allow to achieve desired solution (estimation of underwater channel 
impulse response with a low number of approximating functions). Unfortunately these 
functions very often do not fulfill  basis of orthogonality, which leads to complication of the 



process of approximation. The goal is to find method, that would allow with usage of 
computing machine to compute coefficients of any approximation function  in unrestricted 
interval (a,b). The function mustn’t have complicated Laplace transform. In other way, 
finding spectrum would be very difficult.  
 

1. BASIS OF METHOD OF APPOXIMATION BY NON-ORTHOGONAL FUNCTIONS 
USED TO CALCULATE CHANNEL RESPONSE 

 
Every function can be represented by [2]: 
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where: 
f(t) – approximated function; Cn – coefficient; 
gn(t) – approximating functions; k – natural number 
 
 
The evaluative criteria is the mean squared error, which can be described by the 

equation below: 
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The mean squared error must be the smallest. To fulfill this, the following formulas 

must be performed: 
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After calculations, system of k equations with k unknown variables is obtained: 
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If approximating function was orthogonal, every integral  for l different 

than m would equal 0 and formulas for sequent coefficients would  be represented by: 
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In the case, all the functions gk(t) are not orthogonal, values of this integrals (4) may not 

be equal 0.  So the problem of approximation by any function resolves to solution of k linear 
equations with k unknown variables. Unfortunately, for a large number of coefficients Ck,, 
finding solution would be practically impossible without computer. For a number of  3 values 
of coefficients calculations become very combplicated. 

Integrals, that are in formulas (4) have to be computed before. When the approximated 
function is presented in the form of samples and Simpson critera is used to calculate 
intergrals, formulas will be reprsesentated by: 
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where: 
 - distance between samples fΔ
fn, fn+1 , fn+2 – samples of approximated function 
gk,n, gk,n+1, gk,n+2 – values of k approximating function  
m – number of samples of channel impulse response 
 
 
Integrals by the aproximation coefficients are to be solved the same way: 
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After calculation of these values, expected equation system can be defined.  
 
 



2. OBTAINING IMPULSE RESPONSE IN DEEP RESERVOIR 

 
Let’s now consider a deep reservoir. Signal, that is spreading in water reaches receiver 

only in one path. During transmission, there is no reflections from water surface nor the 
bottom of reservoir. The input signal is explosion, which is adequate to Dirac impulse in 
underwater transmission. 

 
For a better realization of the impulse response in underwater channel function must 

fulfill the following conditions: 
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Besides that, function in the whole interval from 0 to infinity should have only positive 

values and only one maximum. This is expected because underwater channel responses have 
similar character.  

 
The best family of functions which can be used to approximate underwater channel 

impulse response is: 
mt
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where: 
m, n – natural numbers 
A – any number > 0 
 
In our example we will use the folowing function: 

t
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This function fulfills all assumptions and doesn’t have complicated Laplace 

transformation, which allows to easily calculate spectrum in the later phase.  
 
In this function parameter A is very important. This parameter describes the velocity of 

increase and decrease of the impulse response. That’s why, it is important to find this 
parameter, with which approximation function would estimate the response of the channel as 
good as it’s possible. To gain this, for the sequent parameters A changing from 1 to 20 
process of approximation was executed. After that for every possibility, mean squerre error 
was computed. In this way, the optimal approximation of the impulse response was obtained.. 

 
After approximation function is obtained: 
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Fig. 1 presents channel impulse response, which was obtained as a result of 

measurements and its mathematical representation obtained from approximation by non-
orthogonal functions. 



 

 
Fig.1 Impulse response and its approximated function 

 
Figure shows, that obtained function correctly estimates response of channel. All 

deformations caused by aleatory phenomena are obliterated. 
 
Afterwards, Laplace transform of the channel response is calculated. This allows to 

nominate spectrum function. Laplace transformation is computed, because all the values for t 
< 0 in channel function are eliminated. 

 
After Laplace Transform: 
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Compound variable s is replaced by jω to gain spectrum of channel response. 
 
After conversion: 
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Spectrum function is representated by equation: 
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Fig.2 Amplitue spectrum of approximated channel response  

 

3. OBTAINIG IMPULSE RESPONSE IN  SHALLOW RESERVOIR 

 
This example shows the process of approximation of channel response to explosion in 

shallow reservoir. Figure 3 presents the channel response  taken from [4]. This picture shows 
the main impulse reaching the receiver directly from the place of explosion. The following 
impulses, but with smaller amplitude, reach receiver after reflections from the surface of 
water and the bottom of the reservoir. Explosion took place in reservoir at depth of 350 
meters. Depth of the reservoir was 1000 meters. It is important to know this, because in that 



kind of reservoirs, reflections from the surface of water as well as reflections from the bottom 
of reservoir have significant influence on the shape of the response.  

 
For the better representation of channel response, function, which equation is shown 

below was used: 
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where: 
( Tt −1  - step function shifted by time T 

 

 
Fig.3 Channel response to explosion 

 
After filtering noise out, the process of approximation was proceeded. Similarly to the 

previous chapter very important role plays coeficient A, which describes increase and 
decrease of function. Another very important parameter is parameter T, which describes delay 
of appearance of peek. Just like in first case, number of calculations were executed, that 
allowed to approximate function for different parameters A and T. Afterwards all results were 
surveyed and best approximationg function was chosen. The evaluative criteria, just like in 
the first example, was mean squared error.  

 



After computing the following function was obtained:. 
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On Figure 4 are shown: channel response after filtering noise out and obtained 

approximating function. 
 

 
Fig.4 Impulse response and its approximated function (dashed line) 

 
 
After Laplace transform: 

( ) ( ) ( ) ( )
ssss e

s
e

s
e

s
e

s
sF ⋅−−⋅−⋅− ⋅

+
⋅

+⋅
+
⋅

+⋅
+
⋅

+⋅
+
⋅

= 95,0
4

4,0
4

3,0
4

15,0
4 29

60006
13

12006
50

750006
50

950006)(  (18) 

 
 
 
 
 
 
 



After conversion: 
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Amplitude spectrum is shown on the figure 5. 
 

 
Fig.5 Amplitude spectrum of approximated channel response 

4. CONCLUSION 

Non-orthogonal functions were used to approximate underwater channel impulse 
response. The results of this process were satisfying. The level of complication of obtained 
functions was very low. This allows to construct transmission system based on popular 
microprocessors, because process of computing doesn’t need complicated calculations. It can 
be assumed, that method presented in this paper is correct and can be applied and developed 
in subsequent research. It is important to elaborate and analize methods of verification of 
gained functions. These methods should allow uncomplicated implementation in adaptation 
receiver systems working in underwater environment, which is the subject of further work. 
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