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Polyphase sequences which have a low autocorrelation ensure an easily detectable 
peak in the output of a matched filter of a radar receiver.  The low autocorrelation for 
polyphase codes is usually described in terms of the maximum magnitude of its sidelobes 
level. In this paper, an evolutionary algorithm combined with a local optimizer is used to 
search for polyphase codes with a small sidelobe level of an aperiodic autocorrelation 
function. The evolutionary algorithm is based on a floating-point representation and the 
Gaussian mutation is used to produce offspring for the next generation. The local optimizer is 
applied to find polyphase sequences which are good starting points for the evolutionary 
algorithm. This research demonstrates that optimization methods can effectively find 
polyphase codes with the low autocorrelation and seems to be very promising for future 
research in area of computer optimization for radar polyphase codes synthesis. 

INTRODUCTION 

Phase coding is one of the early techniques for pulse compression of radar signals. The 
advantage of the pulse compression method is the increase of the average transmission power 
while retaining the range resolution corresponding to a short pulse. Pulse compression may be 
performed by means of matched filter, in other words, by correlating the received signal with 
a stored replica of the transmitted signal.  

 The aim of this research was to develop an evolutionary algorithm combined with a 
local optimizer and apply this hybrid technique to solve a very difficult real-world problem of 
search for polyphase sequences, which have the most desired properties for radar applications. 

1. PROBLEM DEFINITION  

The phase-coded pulse, shown in Fig. 1, is divided into M bits of identical duration tb=T/M, 
and each bit is assigned with a different phase value φm. Such sequence of phase 

mailto:dszczeg@mail.atr.bydgoszcz.pl


values is an example of a potential solution for the optimization problem of designing 
polyphase code. 

 
Fig.1 An example of the phase-coded pulse  

 
The complex envelope of such phase-coded pulse is given by 
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The pulse compression goodness of a polyphase code is based on its autocorrelation 
function. The Autocorrelation function of phase-coded pulse is a continuous function of the 
delay τ and is defined by 
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where the asterisk denotes the complex conjugate. This function may be expressed as the 
discrete aperiodic autocorrelation function according to the interpolation done in the complex 
plane and given by equation  
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where R[k] is the discrete aperiodic autocorrelation function evaluated at τ = k and 0≤η<tb [2]. 
An example of the autocorrelation function is shown in Fig. 2. 



 
Fig.2 An example of the autocorrelation function 

For examining the properties of polyphase sequences, it is sufficient to calculate the 
autocorrelation function only at integer multiples of the bit duration. The aperiodic 
autocorrelation coefficient ck may then be written as 
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where the asterisk denotes the complex conjugate and , for 1 ≤ m ≤ M, 0 ≤ φmj
m ea ϕ= m <2π. 

Because the autocorrelation function is symmetrical with respect to its mainlobe |ck|=|-ck|, it 
may be rewritten with positive index k  
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A low autocorrelation for codes is usually described in terms of the maximum 
magnitude of its sidelobes level. Polyphase sequences, which have low sidelobe levels, ensure 
an easily detectable peak in the output of a matched filter of a radar receiver. 
Because first coefficient |c0| is the mainlobe and the last sidelobe equals one in any case |cM-

1|=1, the objective function of the optimization problem can be eventually expressed as 
follows 
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Summing up, the optimization goal is to find a polyphase sequence which has a 

maximum sidelobe level as low as it possibly can. The Problem under consideration is 
modeled as a nonlinear, NP-hard optimization problem in continuous variables and with 
numerous local optima [3]. 

2. OPTIMIZATION ALGORITHM 

In this research, an evolutionary algorithm combined with a local optimizer was used to 
search for polyphase codes with a small sidelobe level of an aperiodic autocorrelation 
function.  

The optimization algorithm is shown in flowchart form in Fig. 3. The evolutionary 
algorithm begins by initialising a population of potential solutions for the objective function. 
Next the local optimizer is applied to improve starting points. New solutions are then created 



by mutating those of the initial population. All solutions then have their “fitness” evaluated 
and a selection criterion is applied to remove worse solutions. This process is iterated using 
the selected solutions until the stopping criterion is met. 
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Fig.3 The evolutionary algorithm in flowchart form 

For such nonlinear numerical optimization problem, the evolutionary algorithm was 
based on a floating-point representation. Each individual x in the population was represented 
as a vector of floating-point numbers x=(x1, x2, ...., xn ). 

In order to produce offspring for the next generation, the Gaussian mutation was used. 
The crossover operator was rejected because of its disruptive influence on the convergence of 
the algorithm. Mutations were then realized by adding to each component of the vector a 
random Gaussian number with mean zero and standard deviation σ, decreasing during the 
evolutionary process and depending on the number of generations. 
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where t - current generation number, T – maximum generation number [6]. 
For the selection of individuals for the next generation, tournament selection was 

applied. In this approach, the individuals in the population are randomly grouped in pairs, the 
fitness levels of two individuals are then compared to each other. The individual with the 
better fitness survives to the next iteration while the other is terminated. 

The local optimizer was applied to find polyphase sequences which were good starting 
points for the evolutionary algorithm. Such approach significantly improved the performance 
of the evolutionary algorithm. The local method utilized another evaluation function than the 
evolutionary algorithm, which was the sum of the sidelobe energies 

21

1
2 )( ∑

−

=

=
n

k
kcCl ,                                                        (8) 

but minima of both functions should lie close together. 
Two dimensional examples of both functions utilized in the optimization process are 

shown in Fig. 4 and Fig. 5.  



 
Fig.4 A two dimensional example of the objective function for the local method 

 
Fig.5 A two dimensional example of the objective function for the evolutionary algorithm 

It is worth noticing that the base energy function (Fig. 4) has more regular surface and is 
easier to optimize. Briefly speaking, the aim of the local optimizer, which utilized equation 
(8), was to move some initial points towards regions suspected of containing outstanding 
solutions for the latter function (defined by equation (6)). 

The local optimizer was based on the Hooke-Jeeves direct search algorithm. This 
algorithm consists of two steps. First exploratory moves are made about a base point solution 
to determine an appropriate direction of search.  Then, in second step – pattern search, the 
base point solution is moved, according to the previously determined direction, to a new 
location. If in exploratory search, all trials are not found the better value of the function, the 
algorithm goes back to the best recent base point and then step size is reduced and exploratory 



moves are made again. These stages are repeated until a step size becomes less than a pre-set 
value [5].  

3. RESULTS 

This research demonstrates that evolutionary strategies can effectively find polyphase 
sequences with the low autocorrelation and seems to be very promising for the future research 
in area of computer optimization for radar polyphase codes design. 

The evolutionary algorithm was tested for some arbitrary selected lengths from the 
range of 13 to 128. In some cases, especially for shorter sequences, the algorithm found a 
polyphase Barker sequence occurring when a value of maximum sidelobe level is less or 
equal to one [1,4].  In general, such sequence might be regarded as a perfect solution. In the 
remaining cases, the results were also satisfactory. 

It’s worth mentioning that the number of individuals in the population was ranging from 
one to three thousands and most of the results were obtained by only two or three runs of the 
algorithm therefore an influence of initial phase configurations on optimization results has not 
been studied yet.  

 The results are presented as values of Peak-to-Sidelobe Level ratio, which is often 
used to quantify the performance of sidelobe suppression. PSL is simply the ratio between the 
highest sidelobe and the mainlobe expressed in decibels. 

The obtained results, illustrated in Fig. 6, range from 25.13 dB for the code length of 13 
up to 34.47 dB for the code length of 128. 
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Fig.6 The results of the optimization process 



The comparison of obtained codes with Frank and P4 sequences is shown in Fig.7. 
Comparing achieved results to the ones obtained by examining characteristics of well known 
Frank codes or P4 codes, we can easily notice that  in every case for the same length the 
obtained codes has outperformed Frank and P4 codes.  
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Fig.7 The comparison of Frank and P4 sequences with codes obtained in the optimization process 

4. CONCLUSION  

The results seem to be very promising for the future research in area of computer 
optimization for radar polyphase codes synthesis, especially considering the fact that all 
calculations were performed on a single standard computer. 

The growth of the computing power should bring much better results, especially for 
longer sequences, and allow an optimization of very long codes. Therefore, future research 
will be oriented on implementation of parallel evolutionary algorithms using distributed 
programming. The improvement of the evolutionary algorithm and the local optimizer will 
also be considered. 
It should be mention that Frank and P4 codes have higher Doppler tolerance than obtained 
sequences in the optimization process. Doppler resilience is particularly essential in cases 
where long pulses are transmitted against high velocity targets. Therefore, in future research, 
Doppler shift will be taken into consideration in the optimization process of polyphase 
signals. The problem of finding codes resistant to Doppler shift is very complicated and is 
based on examination of sidelobes in the ambiguity function of the polyphase signal. For 
example, the ambiguity function of a code obtained in this research with length 25 is shown in 
Fig. 8. 



 

 
Fig.8 Partial ambiguity function of the 25-element code obtained in the optimization process 
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