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This paper deals with description ol Ji,nite-amplitude standing waves in both closed and
semi-closed resonaiors. Numerical solutions oj second-order one-dimensional model equa-
tion are used. The nonlinear standing waves are generated by a piston or shaker. Nu-
merical results ol multifrequency driving technique lor suppressing ol higher harmonics are
presented.

INTRODUCTION

The problem of finite-amplitude acoustic standing waves in confined geometries is of
considerable interest in different fields of physics, especially in physical acoustics. Energy
stored in the form of acoustic standing waves in resonant cavity can be utilized in many
branches of industry, medicine, etc. When a standing wave is driven into high amplitude,
nonlinear effects couple energy from low- to high- frequency modes, ultimately resulting in
shock wave formation and heightened dissipation. These nonlinear effects can be suppressed
with the use of a disonant resonator in which modal frequencies are not integer multiples of
fundamental mode frequency. Multifrequency drive technique can be also used for reduction
of the nonlinear effects and thus more effective energy storing. For theoretical study of
waveform it is necessary to solve model equations appropriately chosen for particular case.

1. MODEL EQUATIONS

An one-dimensional second order model-equation was used for description of nonlincar
acoustic standing waves in constant-diameter resonator.

l a2p' a2u
~ fJt2 + Po axfJt

ap'
8x

(1)

(2)

mailto:cervenm3@feld.cvut.cz


80

Derivation of this equation can be found in [3). II =P-Po is acoustic pressure, u is particle
velocity, Po is equilibrium acoustic density of ambience, Co is small signal sound speed and
symbol a represents resonator acceleration. Symbol (3 represents nonlinearity parameter
defined as

(3= 1'+1
2

and (3)

is diffusity coefficient, where 'TJ and ( are viscosities, /'i, is heat conductivity coefficient, rp and
cv are constant pressure and constant volume specific heats, respectively, l' = ep/CV. This
set of model equations is written in coordinates that are moving together with the resonator
cavity. These equations take into account influence of viscosity and heat conduction,
it assumes satisfying of resonant conditions thanks to constant temperature in resonant
cavity.

For numerical purposes, it is better to rewrite equations (1), (2) in dimensionless form.
Using

x a u p'
X=-L' T=wt, A=Lw2' U=-L ' P=-L22' (4)

o Wo Po Wo
where L is length of the resonator, w is the angular frequency of the periodic force that
shakes the resonator, Wo = 1rCo/ L is fundamental mode of the resonator. After rewriting
into frequency domain we obtain

dd[J;Xk -k21r2GOPk - j1r2kOPk + jk 1r4 (.8 - 1)O f Pk-iP. +
2 i=-N+k

N

Uk-iUi + 1r2 L Ak-lU., (5)
i=-N+k i=-N+k

(6)

where 0= w/wo and G = bw/ Po~.
The fifth-order predictor-corrector method was used for numerical integration. The

two-point boundary value problem

Uk = 0, for X = 0, (7)
Uk = O, for X = 1, (8)

where integer index k varies from 1 to N, was solved numerically using the shooting-
method.

In the case of steady resonant-tube driven with vibrating piston, we obtain similar set
of model equations in dimensionless form

dUk k2 2GOR . 2 n . 4 (I' - l) ~ . 2 ~dX - 1r k - J1r k"Pk + Jk 1r --2-0 c: Pk-i~ + Jk1r O ~ Uk-łUi,
i=-N+k i==-N+k

dPk
dX = -jk OUk,

with boundary conditions

(9)

.Ak t: X-JT' lor = O,
0, for X = 1,

(10)

(11)
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where index k varies from 1 to N. Symbol Ak represents spectra of dimensionless periodic
acceleration of driving piston.

2. MULTIFREQUENCY DRlVING TECHNIQUE

It was shown, that it is possible to suppress higher harmonie components in resonant
cavity by means of two- or three-frequency driving force, where additional frequencies
are second and third multiples of frequency fundamental, (see [4]). Providing that entire
resonator is moving, it is essential to divide the resonator into two halves of different
diameter to excite a waveform with second multiple of the fundamental driving frequency.
However, standing wave in steady resonator is possible to be excited with arbitrary integer
multiples of fundament al mode. Numerical algorithm for modelling of suppression of the
higher harmonie components of standing acoustie wave is based on the shooting method.
The second harmonie component of the driving force is iteratively estimated to suppress
higher harmonie eomponents of aeoustie standing wave in resonator.

3. OPEN-ENDED RESONATOR

Linear boundary eonditions for modelling of open-ended oscillating resonator tube were
used in the form of

o for X = O,
.!. [l _ J1(2brD.R) + .SI (2brD.R)]
7r brD.R J brD.R for X = O,

(12)

(13)

where J10 and SIO are Bessel and Struve functions of first kind and order, R = r / L is
radius divided by resonator length. Open-end of resonator is modelled as non-weighted
piston-oscillating diaphragm placed in rigid wall. It's impedance is frequency depended,
eonsequentIy conditions for resonance are not fulfilled for all frequeney eomponents and
thus they are suppressed.

4. NUMERlCAL RESULTS

Comparison of acoustic pressure obtained with resonator driving by vibrating piston
and entire resonator shaking is shown in figure 1. Dimensionless aeeeleration is set to
A = 5 X 10-4 in both cases. In all eases length of resonator is L = 0.17 m. First and second
harmonie eomponents are plotted here, the higher values belong to resonator driven by a
shaker.

Spectra of acoustic pressure in cylindrical resonator driven by a piston is shown in figure
2 on the left. Sinee conditions for resonance are fulfilled for all higher harmonie eomponents,
they are excited and energy is dissipated. In figure 2 on the right side it is shown the same
resonator driven by first and seeond harmonie eomponent of piston driving foree. Higher
harmonie eomponents are quite suecessfully suppressed and fundament al component of
standing pressure wave is higher.
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Figure 1: Comparison of first two harmonie eomponents in resonator driven by shaking of entire
resonator and by a piston,
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Figure 2: Spectra of acoustic pressure in cylindrical resonator (left) , the same in case of multi-
frequency driving (right)

Time dependenee of acoustic pressure at the end of resonator in case of single-frequeney
and multifrequeney driving is shown in figure 3. In the case of single-frequeney, shock
wave is generated. Thanks to multifrequeney driving, higher harmonie eomponents ean be
suppressed and weak harmonie distortion appears.

The dependenee of higher harmonie eomponents generation by a miseellaneous piston
aeeeleration (aeoustie saturation effeet) is shown in figure 4.

Frequeney response of open-ended resonator is shown in the figure 5 on the left side.
Thanks to mass of co-oscillating fluid around open end, frequeney of fundamental mode is
deereased to approximately n = 0.41. Providing that resonator is driven by shaking entire
eavity, seeond multiple of fundamental mode does not excite standing sound waves. It ean
be seen from figure 5 on the right that owing to frequeney dependenee of the open-end
boundary impedanee, resonant eonditions are not fulfilled for higher harmonie components
and they are thus suppressed.
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Figure 3: Time dependence of acoustic pressure at the end of the resonator in case of single-
frequency and multifrequency driving.
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Figure 4: Acoustic saturation effect for single-frequency driving (left) and multifrequency driving
(right).

CONCLUSION

Numerical solutions of one-dimensional second-order model equation in frequency do-
main were presented here. It's derivation can be found in [3). Comparison of acoustic
pressure spectra in resonator driven by a piston or a shaker was accomplished. It was
shown that suppression of higher harmonics by multifrequency driving technique is quite
a effective, comparable or more efficient than suppression performed by an axisymetric
disonant resonator, see [1], [3]. It was also shown that frequeney dependence of an open-
ended resonator boundary value affects suppression of higher harmonie components eausing
higher amplitude of fundament al harmonie component excited in resonator.
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Figure 5: Frequency response of a open-ended resonator (left), distribution of acoustic pressure
spectra along resonator length (right).
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