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We start from the cubic KZK equation for u/trasonics beam that accounts first, second and third
powers of density in pressure Tay/or series expansion. In a condition of moderate amplitude and nearfleld
one can use approximate solutions provided by perturbation method inc/uding terms resonant to the
mu/lipie frequencies on a transducer. We consider three resonant harmonics within Rayleigh distance
range. The second and thtrd harmonics averaged over the beam cross-section are expressed in terms of
some standard integrals and nonlinear constants. Fourier transforms of a signal on a receiver are
equalized to the resu/ts of the evaluation that give equations for the non-linear constants determination.
This in tum al/ows to compute constants B/A and C/A ofthe equation of state (viria/ expansion).

1. Introduction

The main goal of this paper is an attempt to
construct a recipe for a calculation of non-lincar
constants and, via them, a virial coefficients in the
framework of Khokhlov - Zabolotskaya (KZ) model
for a weak nonlinear acoustic bearn. The
coefficients of the virial expansion we define as
derivatives from Taylor series expansion of a
dimensionless acoustic pressure as the function of a
dimensionless density variations.

Recently some direct extension of the elassie
model [IJ was introduced [2). We imply that the
authors worked inside the origina! scheme of [IJ.
That resulted in the cubic KZK (cKZK) equation
with additional cubic term under the second time
derivative and coefficient combined from A,B,e
similar to [3,4], but the expression for the
coefficient is different. The discrepancy with the
results is appeared due to a crucial assumption
about the potential character of a medium motion
(the introduction of the potential velocity function)
of [4J. We do not forget about famous Thomson

theorem but adopted a strightforward derivation
because the folIowing reasons.

l.The acoustic field pulsation produced by a
transducer very close to an oscillating piston exibit
a drastically nontrivial character. Some direct
measurements by a point (about 0.5 mm)
rnicrophone discovered a fine structure with quite
possible curly motion [6). This phenomenon surely
may be generated by a transverse medium
movement that may łaunch vertical Tollrnien -
Schlichting waves at the piston boundary łayer . A
transverse nonzero modes of a membrane (piston)
oscillations also influence the nearest layers of the
medium.

2. The equation of state we use folIowing the
c1assic scheme (see [5] as well) is however non-
standard from the general thermodynarnics.· It
perhaps pose a constraint. Therefore the theory is a
phenomenołogical model. Moreover the direct
calculations we delivered do not give the zero rotV
meaning [7].

So we exploit here approxirnate solutions of the
equation for a weak non-łinear sound bearn
nearfield in an homogeneous mediwn that
generalize Khokhlov-Zabołotskaya one [1] .The
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solutions are obtained and evaluated by the
perturbation scheme originated from [8) and applied
and developed in [2,7,9}. The equations for the
nonlinear parameters (see also [lO]) realised to be
non-linear as it is shown in the third section. The
solutions of this cKZK equation are presented and
au attempt to calcu1ate the third virial coefficient
(more exactly CIA) is done at the last section.

2. List of Symbols and Cubic KZK Equation

Co velocity of sound,
pressure,
mass density,
hydrodynamie velocity with components
{Vx' Vy, Vz},

linear frequency
angular frequency (J) = 2ftj ,

wave number k = m I c o
Bessel function ofthe n-th order,
transducer radius,
radial vańabJe;
Rayleigh distance, ro = ka2J2;
Cartesian variables ;
parameter of quadńc nonlinearity,
parameter of cubic nonlinearity,
dimensionless coordinate along acoustic
axis, O' = x/n, .
dimensionless coordinate across acoustic
axis, ~ = r/a ,
retarded time 1:= t - xl co,
dissipation coefficient
dimensionless amplitude on transducer.
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The cubie KZK equation for the acoustie
pressure in the form we derived earlier [7] (for the
cKZK in different contexts see also [2),[JI,[IIJ )
reads

~'~lP - b'·p =p" - 2 'r r r

E: 2 li
lAc

o
' (p )" - lA 2e

o
(p3)" '

where the nonlinear eonstants are

10= l + BJ2A (2)

8 = 1+ 3BJ2A + 3B2/4A2_ C/6A (3)

The eonstant in the dissipative (Kuznetsov) term is

b' = b/2eoJpo

3. Fourier Harmonics From Perturbations

A solution of the equation (1) should be
expanded into the Fouńer series by introducing an
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amplitude parameter A = maxlp/Pol as a small
parameter for the perturbation theory (Taylor) series

(4)

Here
Pn = lnJ(x,y, z) -expji ann] + C.C.

and c.c. means the eomplex conjugate

The substitution of (4) in (l) gives after
transformations:

..!.. ~ An.[(ironp(n)x-cOÓ.lp(n)/2+
2 n = l

+ in 3ro3b, pen) )eiroll't +c. c.] =

_ ro2
E: ~A l+m(l+mf[p(l)p (m) eiro't(I+m)

8cOA I,m = I

+c.c.)+

ro 28+ ol<

16cOA 2
(5)

~A.I+m+k[(l+m+k)2p(l)p(m)p(k).
l.rn.k e l
eiro't(ł+m+k) +

(I+m_k)2p(J)p(m)p(k) .

e iro't(ł + m - k) +

(I-m _k/p(l)p(m)p(k).

eiwt(l- m - k) +

(1- m + k)2 p(1)p(m)p(k) .

eiro't(l- m + k) +c. c.]

The equation for the third harmonics is
(l) simplified if one introduce the new amplitudes

p(J) = a(r,x)exp(-bl(J)2x)'

(2) (2 )P =ft(r,x) exp -4b'{J) x,

p'''=y(r,x) eXP(-9b'{J)2x).

Here r = ~ y2 +z2 is the radial vańable. Further

we put A = l. The explieit solutlon of the linear
problem for a. with the cylindrical symmetry and
boundary condition that follow from one for the
aeoustic pressure and a supposition that nonlinear



generation: of higher hannonics is negligible at the
transducer surface.

a(r,O)=TI,
a(r,O) = O,

r < a,

r> a.

where TI is the acoustic pressure amplitude on a
circular piston transducer. The boundary conditions
for p and y are zeros. The resulting expressions for
the functions 13and y may be taken from [8]. After
transformations, one have

where a, = bco212poC3 • linear absorbtion coefficient.
Dimensionless coordinates 1;= r/a and cr = x/ro are
introduced.

The results are obtained by the Green function
method for the axial symmetry of equation and
boundary condition for pressure and contain a
minimai number of integrals (see e.g. [2, 3], ibid.).
It is the case of the unifonnly exited plain circular
piston. The equation for the third hannonics is:

6 iw y x = Co Ó. .l y - [9 _E_w 2a f3
coA

9 2 /) 3
- -w ---a

4 Co A 2

. exP(2b'w 2x)]exP(4b'w 2X).
Now we restrict ourselves by the averaged signal

at receiver. We use the infinite receiver as a good
approxirnation for a receiver that is bigger than the
beam cross-section. Integrating over the infinite
receiver at the point x, one have:

l f.'"(y) = -2 2nrydr =
na o

3w r ( )i'"- i 2 2 /) exp 6b'w 2x a 3rdrdx
4a coA o o

The integrals of the term containing transverse
Laplacian vanish as the beam field is spatially
restricted. In faet, due to the cylindrical symmetry
the integral by the radial variable gives

(6)

r;.1lYdr=r~r~rdr=o (8)Je!' O Or Or

a
For r-y is zero at r = 00 and r = O due to thear

strong deeay of the amplitude of the third
hannonics and its derivatives at infinity. After
simple scale transformations to the same spatial
variabies as for a, p: q = r/a. (f= x/r-; one bas

(7)

4. Evaluation or the Virial Coefficient.

For the evaluation ofthe virial coeffieients BIA and
CIA we will use experimenta1 data from the papers
[6,9]. The meaning of the parameter E and as a
eorollary the value of the parameter BIA one can
easily find from the expression and data for the
second hannonies. We do it as a test for the
coefficient in cKZK by the quadratie term . It is
evaluated from the times of [10]. Comparing the
data from [9), for example

Table l. Second harmonics integrals.

cr Re(f3) Im(f3) Tf3T

0.362 -0.0162 -0.254 0.304

and the results of evaluation by (7) we extract the
constant E .

Now we define a dimensionless solution of the
cKZK by (4) generated by the unifonnly exited
piston with the dimensionless amplitude pressure TI
on it and definite frequency w. Let us define the
folIowing diffraction integrals for et, f3via:

a = TI.I,(cr,1;), f3= _TI2 (ka)2 El2(cr,1;), (10)
A

The forms of a and fi (see the explicit
expressions in the dimensionless variabIes (7» are
taken from [2) that is the transformed version from
[8]. The averaged meanings of <r- (see (9» is
provided by
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The coefficient functions JJ, J4 are proportional

to integrals of afJ and a3 correspondingly. When
b=O (no dissipation) the expressions are more
compact (9):

For the evaluation of the virial coefficient C/A
we use experimental data from the papers {6).
Especially we should note that in the work [6] the
data about amplitude of perturbation is in form of
percent of 17. Comparing the data which are derived
by the formula for 1 fJ 1 (that is the corollary of (7»
with experimental data we can see that E = 3.85
that gives an estimation B / A = 5.7 .

For definition of parameters o and C/A we use
data about the third harmonics of acoustic
perturbation. The examples of the results of
integrals calculations are given in the folIowing
table:

Table 2. Modules oj integrals jor the third
hannonics eva/uation.

o 113 1 1141
0.088 0.0000109 0.00173

0.137 0.0000373 0.00291

0.176 0.0000683 0.00400

Because of the experimental data in the paper
[6] are given for I(W) I and I(y') Ilet us transform

the formula (11) to the following view:

16(ka)\;411312 +5211412 +

+ 8(ka)2 E: 25[Re(I3)Re(I4) + Im(I3) Im(I4)] = (14)

4 A4 2

= 9 rr4(ka)21( y')1

We should remember that the harmonics
amplitudes 13', y' are given also in percents of 17.
The values of a real and imaginary parts of the
integrals are given below for the same distances
from the origin as in the previous table 2..
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Table 3. Real and imaginary parts oj the third
harmonics integrals .

Re(I3) Im(h) Re(I4) Im(I4)

0.000009 0.00000 0.00173 -0.000041

0.000024 0.00002 0.00287 0.000440

0.000025 0.00006 0.00392 0.000758

(13)

There exist two ways to continue. First is by
substitution into the equation the value of e (we
used the data for x=O.2). which was found above,
and experimental data for y from [5], and hence one
arrive to a quadratic equation for O. Sa we find that
o = 104 . Also we evaluate C/A = 104 . We had
divided the right-hand sides of the equation (14) at
the different points and therefore excluded a
mistake in the amplitude on the piston. The root of
the quadric equation we choose by a physical
reasons [12]. We should emphasize that the values
we mention here may be considered onIy as an
estimation of orders because the precision of
experimental data seems to be law for such
determination. Moreover the parameters of the
experiment should be choosen speciałly. For
example. it is better to take the parameter ka of less
order to diminish the instability of the estimation.

For the estimations we used the following values
of parameters:

ka = 97;

A= 7.14;

II = 4.5 10.4

Second way is the use of experimental data for
three points and derive this system of three linear
equation for parameters e4,02 and e] ,o of the
form (14). After calculation we have, for example.

e4 = 237.

The result is close to the estimation given before
and apparently leads to the close meanings for the
parameter CIA.

As it was mentioned in the introduction during
the calculation of integrals of a rapidly oscillating
integrand of the expressions for p(i) we used the
PASCAL program and the speciał algorithm for
such case. The approximation of the integrands by
this algorithm is more exact and converge more
rapidIy in comparison with one used in [2,7,9]. It
gives a possibility for a rapid evaluation of constants
in a technical applications ofthe theory.



For the averaged third hannonics the equation is
obtained just analogously to [2,7] and to one
mentioned in the previous section.

We see that the mean value of the third
harmonics is the sum of two terms and both are
proportional to II3� It means that the tenns belong
to the same order of nonlinearity. The dependence
on parameters A,B,C is considerably different,
moreover, the structure of the integrals and
therefore the dependencies of the terms on d.istance
c is different as well. Hence one can estirnate the
constants from measurements of the third
harmonics contribution as the function of d.istance
in the nearfield. It is important however to
deterrnine the range of amplitudes and d.istances
where the third harmonics is big enough and the
results of the approximations are yet valid. For the
purpose we estimate the result using the typical
values of parameters from [2].

The comparison of the results of numerical
calculation of the integrals are given at the Fig.3 at
[7), where .the contributions of the tenns
proportional to a.j3 and a.3 are evaluated separately .

Let us d.iscuss now the resu1ts of the
calculations. We would repeat that the curves for
the tenns in the expression (lI) are essentially
different that allow to d.ivide the contributions and
estirnate the virial coefficients B and C. It is
interesting that the sum of the curves at d.istances
between O and 0.5 fit better the numerical
calculations that the curve reproduced in [9J
(originated frorn the usual KZK equation). It is
understandable that in the range of big amplitudes
the successive approxirnations that we develop here
fails. But at "not very big" amplitude of the signal
range we would hope that the difference between
KZK (or generalized KZK (cKZK) ) and our
perturbation scheme is smalI. It is really supported
by the comparison between our ca1culation and
d.irect finite-di.fference integration approach [6,9).

When we substitute the expressions for a and p
in the equation (6) and integrate it, we go to the
formula for averaged third harmonics at a d.istance
z. The resulting formula for the smalI d.istances
(where ~xp(4b'(j)2X)== l+4b' alx) may be expressed
as a linear combination of e,2 , l) and b' e,2 , etc.
with diffraction integrals that depend only on x. It
allows us to simplify calculations of nonlinear and
absorption pararneters by fitting of measurernents to
theoretica1 curves.

5.Conc1usion

We see the physical applications ofthe higher terms
account in the equation of state (virial coefficients)

deterrnination that are connected with the general
theory of the condensed matter. The equation of
state may help to ca1culate the coefficients of a
model equation [Il] or estimate models valid.ity as
in [l2] where the choice of the model strongly
inf1uences the molecular d.ynarnics simulations (a
fonn of a potential of the intennolecular
interaction). We also hope for such a development
of the theory that may give rise to a environment
physics aspects applications.
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