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The exact expression for rejlection coefficient has been obtained with the Thomson-Haskell technique jor
the bortom model consisting of an elastic homogeneous layer overlying elastic half-space. The behaviour of
the frequency-angular dependence for exact values of the rejlection coefficient was studied. Inspection of
exact expression for reflection coefficient shows that resonance behaviour will exhibit when the real part of
denominator vanishes. The characteristic equations were obtained and roots of equations were found.
Resonance positions for compressional and shear wave velocities were determined. Frequency-angular
resonance positions were obtained both using resonance theory and exact computations. Comparison oj
obtained resonance positions was performed. The changes in the position for the resonance peaks for
frequency- angular resonances as a function of the bottom model parameters were analysed. This work was
supported by the Russian Foundation for Basic Researcłt (No.97-05-647I2).

1. Introduction

The usefulness of a resonance analysis for
acoustic waves interacting with liquid layer and
elastic plates embedded in a fluid have been illus-
trates in [1-2]. Exact expression for the resonance
positions, widths, and strengths in the transmission
and reflection coefficients have been written explic-
itly in terms of material and geometrical properties
of the layer under consideration. The resonance
theory of a fluid layer including viscous effects has
been extended by R. Fiorito, W.Madigosky
H.Uberall in [3], by the introduction of a complex
sound velocity. In recent paper of R.Keltie [4] an
analytical model of a compliant elastic coating
attached to a submerged thin plate has been devel-
oped. The effects of incidence angle, frequency,
location throughout the coating, and coating prop-
erties on the signal response are evaluated. An ul-
trasonie method for determination of the complete

set of acoustical and geometrical properties of an
isotropie layer embedded between two known mate-
rials at two angles is described by A.Lavrentyev and
S.Rokhlin in [5].

In the present paper the resonance formalism,
previously developed in [1-3] for an liquid layer
(elastic plate) between two liquids, was extended for
the case elastic layer covering an elastic half-space.
Viscosity (absorptive effects) were took into account
by the introduction of a complex velocities, the
imaginary part of which is written in terms of an
absorption loss factor. Exact analytical expressions
for the reflection coefficient have been derived using
Thornson-Haskell technique. Inspection of exact
equations for the reflection coefficient shows that
resonance behaviour will exhibit when the real part
of the reflection coefficient denominator vanishes.
The characteristic equations were obtained and roots
of equations were found. Analytical expressions
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dctcrrnined rcsonance positions eonnecred with
compressional and shear wave vclocities were
obtained. Cornparison of the resonance approach and
exact computation was performcd. Changes of
resonance peaks positions as a Iunction of the bot-
tom model parameteis we re analysed on the fre-
quency-angular plane.

2. Model Formularion

The physical model used in thc study of fre-
qucncy-angular resonancc is shown in Fig.l, the
quantities Co, Po are the sound speed and thc density
of a liquid half-space, d, c l. c, P are the thickness.
cornpressional and shcar wavc velocities, density of
thc laycr, c l~, c t~, p~.are compressional and shear
wave velocities, density of the elastic half-spacc.
Sediment parameters arc permitred to be constant
within elastic layer. The water eolurun and clastic

Co Po Water

Elastie Layer

ClI"> Ct<x> Elastic Half-Space

Fig. /. Geometry of the seabed model.

halt-space (substrate) are assumed to be homogcnc-
ous and semiinfinitc. In thc layer, including the
substrate, the effects of the allenuation arc taken into
accounl by assuming shcar (c.) and compressional
(CI) wave velocities are cornplcx c=c,+ic, It is
requircs cornplex wave numhers

K=w(l-i(c;lc,))/(I+i(c;lc,l), =2Kf, f is Irequency.
Attenuation within the water column will he ne-
glectcd. II is assumed that the displacement Iiclds
U=UCU"Uy=O,Uz) can be written in terms 01' the
scal ar <pand the vector potential '1':

U=grad<p + ronp = Y'<p+ Y' ''1'. (I)

Cornponents of the displacemcni in the layer for
reetangular eoordinates:

where <p and 'l' are governed by the Hclmholtz
cquations:
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0:2= K?_~2, ~'= Kt2~2, ~= K sin(e) = KI Sincel) = Kt
sin(e,), e - incident angle. In addition to components
of the displacernent given in Eq.(2) components of
thc stress tensor, which are continuous aeross an
interface can be written in tcrms of <p and 'l'
potentials:

(Ju =2~(CJ2<p/CJXCJZ-()2'1'/CJZ2),

a,,=_ACJ2ql/CJx2+(A+2~)CJ'ql/()Z2 +()2'1'/CJXCJZ, (4)

where l and ~ are Lame constants connected with
compressional Cl=..J(A+2~)/p and shear Ct=..J~/p wavc
velocities. Solutions of Eq.(3) may be written in
terrus of potcntials. describing compressional and
shear waves:

ql = ql+ exp(iaz) + <p cxp( -iaz),

\jI ='1'+ exp(i~z) + \jI exp( -i~z), (5)
For solution of the system of cquations W.Thomson
and N.Haskell [6,7J proposcd the matrix method, in
which the system of linear algebraic boundary
cquations are replaced hy the matrix cquation: Z
()=DZ~, where Z~ =[ql+,qlj,'I'+,'I'.]T is the row vector,
L=[ cxp( +io), exp( -ió), exp( +ill), cxp( -ill)]' is the
diagonal matrix. Here the superscript T indicates the
transpose of the row vecror. D=Q Aj,l A, L is the
propagator matrix, Aj is the characteristic matrix of
4-th order for a layer, Q is the matrix of 2-nd order
lor liquid a half-spacc:

I t~ 1~ -tf' t~,
p = I \(i ~lCi 1~ 1(;o I

I 211~Y 2~lC;'f -211C;~ 2111';1)

i -2~ll;c( 2~tI~Ci -2~lC;',' -2~~'1'

(6)

The solutions of the system of matrix equations
can he obtained by thc Kramer's rule, Xk = Ll.k / Ll.

(k> l ,2,3), where Xk are reflecnon and refracnon
coefficients, Ll. is the main determinant of the system.

Exact exprcssion for the complex reflection
coefficicnt was obtained and may be written in the
form

V=((A'-B2 +C2_D2)2 +4(CB+DA)2)1 (7)

(A+Bl'+(C-D)2)(A2_B2 +C2_D2+2 i (CB+ DA)),
(2)

where funetions A, B, C and D, contained in (7),
eonnecred hoth material paramciers of media and
angle-frequency-thickness variabies o=ad and ll=~d.
Variabies O and 11 cornbincd with positions of
frcquency-angular resonances for compressional and

(3)
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shear wave velocities. Expressions for the functions
A, B, C and D are not reduced due to its awk-
wardness.

Note it is possible to obtain position of reso-
nance's minima and maxima of the rellection coef-
ficient by using the Ferma theorem for the analytical
expression (7). However, equation obtained after
differentiation of V can't be solved analytically.

3. Resonance Formalism

Inspection of the exact equation (7) for the re-
Ilection coefficient shows that resonance behaviour
will exhibit when the real part of the denominator
vanish, i.e., when the characteristic equations are
satisfied:

or

II' the real part of the denominator vanish the phase
ot' V eq ual to ±rcl2.

The Fig.2 illustrates this fact. In the Fig.2 modulus
and phase ol' rellection coefficient are shown in the
form of isolines.

After variabies separation the characteristic equation
(8) may be written in the form:

KI cos(Ó) cos(11)+K2 COS(Ó)2cos(11/ +
K,sin(Ó)sin(11)+K, COS(8)2 +K, cos(11)2 +
K6cos(8)cos(11) sin(Ó) sin(11)+K7=0, (10)

where constants KI, K2, K3, K" K, , K, , K7 are
connected only with material parameters of media.

In the case of the elastic layer covering elastic half-

(8)

space the Eq.(lO) may be solved separately for Ó and
11variables. Solutions will determine the positions of
resonance for two types of waves at the frequency-
angular piane. The solutions for Ó and 11 may be
obtained by solving of additional 4-th order
equations:

(-Kjcos(11) + K2cos(11)2 + ~'+ K, COS(11)2+ K7)X4 +
(2K3sin(11) - 2K6cos(11)sin(11llX] + (-2K2 COS(11)2-
2~ + 2K,cos(11)2 + 2K7)X2 + (2K3sin(11) +
2Kocos(11)sin(11ll X+ K,cos(11)+K2 COS(11)2+~ + Ks
COS(11)2+K7 )=0, (II)

(-Klcos(Ó) + K2cos(Ó)2+ ~COS(Ó)2+ K, + K7)X4 +
(2K]sin(Ó) -2K6cos(Ó)sin(Ó) )X] + (-2K2 COS(Ó)2+ .
2~COS(Ó)2 - 2K, + 2K7)X2 + (2K3sin(Ó) +
2K6cos(Ó)sin(Ó))X + Klcos(Ó)+K2 COS(Ó)2-iK,
COS(Ó)2+K,+K7)=0. (12)

Then Ó and 11may be found as

Ó=2arctan(X),
(9)

11=2arctan(X), (13)

Ó,,=Ó+2rcn,

11n=11+2rcn,n=O, I ,2, (14)

X are roots of Eq.(II), Eq.( 12) for Ó and 11 respec-
tively, n is the resonance number. These solutions
will true in broad range of grazing angles 8.

Resonance expression for the rellection coeffi-
cient may be obtained as a sum of resonance terms,
both in the frequency variable and in the angular
variable. Mathematically, it is correspond to re-
taining only linear terms in the expansion of ex-
pression for V in the Taylor row around their reso-
nance values Ó".and 11". .

Frequency, Hz

Fig.2 The modulus (a) and the phase (b) ofthe reflection coefficient

Frequency, Hz

4. Frequency and Angular Resonances

Results of numerical simulation of the exact re-

flection coefficient (7) are shown in the Fig.3 on the
frequency-grazing angle piane (CI=>CO>CI)'The piane
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wave reflection coefficient consist frorn regular
sequence of minima and maxima connected with
resonances. Resonances of the reflection coefficient
are functions of frequency, grazing angle and seabed
parameters. Note that frequency resonances may be
observed at very low grazing angles 8=1_2° (Fig.3).
It can result in increasing of sound propagation less
in the shallow sea.

Fig.3. Modulus oj reflection coefficient, plotted as a
[unction of frequency and grazing angle.

The influence of absorption on resonance peaks
of the reflection coefficient illustrate the Fig.4.
Results ot' computation for a 0.7 m-thick scdiment
layer using the actual absorption coefficicnts in the
layer and layer shear wave velocity (Ul =0.01 dB/m,
U, =0.001 dB/m, c,=250 mis) presented for two

grazing angles 8 =30 and 6=610 (curves l and 2
respectively).

Fig. 4 Influence oj absorptioti Oll resonance peaks

Thc absorption decrease the resonances peaks when
frequency increase, due to the dissipation of energy
in thc layer. Frequency resonance width T decrease
when angle increase (T -118). The absorption also
decrease the angu!ar resonances peaks. Angular
resonance width y increase with increasing of
grazing angle.
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At normaI incident angle there is not tangential
components of compressional wave on the water-
sediment boundary and shear wave can't be exited.
50 there is no influence of layer rigidity on reso-·
nance peaks at normaI incidenl angle. Investigation
of influence of sediment and substrale shear speeds
on sound retlection coefficients at low grazing an-
gles actual for study of sound propagation in shallow
water. Numerical research of influence of sediment
and substrate rigidity on the reflection coefficient
resonances for fixed grazing angle 8= 1o show that
frequency displacement of resonance peaks are
observed when the shear speed in the substrate c,~ is
varied (Fig. 5). This displacement principally may be
used for reconstruction of the substrate parameters.

Fig. 5. Dependence oj resonance POSitiOIl [rom share
speed in the substrate for Jixed graring angle 8=1".

5. Comparison of Resonance Approach and Exact
Computations

Comparison of rcsonance approach and exact
computations was performed for the elastic layer
lying on the elastic substrate. The resonance posi-
tions on the frequency-angular piane were calculated
using cxact expression (7) and resonance expression
(14) (n=O). Resonances associatcd with li were
calculated for three differcnt CI in the layer. Exact
computation of resonance position shown on the
Fig.6 as solid linc and resonance approach cal-
culation shown by markers.

The curvc 1,2,3 correspond lo cl=1455 mis, cl=1520
mis and cl=1475 mis respcctively. Computation were
fulfillcd for the grazing angles low than critical.
Dependence of resonance position from CI is c1early
observed.
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Fig. 6. Resonance position on angle-frequency piane
for three different CI. Solid line - exact com-
putations, markers - computations using resonance
formalism

6. Conclusions

The exact expression for the reflection coeffi-
cients have been obtained with the Thomson-Haskell
technique. Viscous (absorptive) effects within the
sediment and substrate were incorporated in these
equations by introducing a complex compressional
and shear wave velocities the imaginary part of
which is written in terms of an absorption loss factor,
in tum required cornplex wavenumbers. Inspection
of the exact expression for reflection coefficient
shows that resonance positions may be obtained
when the real part of the denominator vanish, i.e.
when the characteristic equations for the resonance
positions are equal to zeros. The behaviour of the
frequency-angular dependences for exact values of
the reflection coefficients was studied. Influence of
the effect of absorption and bottom characteristics
influence on the resonance structure was analysed.
Particular attention was devoted to low grazing angle
resonances. The influence of the shear speed in the
sediment and substrate were investigated. The
resonance positions on the angle-frequency piane
were calculated using exact expression and
resonance expressions. Comparison of resonance
positions obtained from the resonance approach and
exact całculations was performed and good
agreement was obtained. Dependence of resonance
position from bottom model parameters was
analysed.
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