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The exact expression for reflection coefficient has been obtained with the Thomson-Haskell technique for
the bottom model consisting of an elastic homogeneous layer overlying elastic half-space. The behaviour of
the frequency-angular dependence for exact values of the reflection coefficient was studied. Inspection of
exact expression for reflection coefficient shows that resonance behaviour will exhibit when the real part of
denominator vanishes. The characteristic equations were obtained and roots of equations were found.
Resonance positions for compressional and shear wave velocities were determined. Frequency-angular
resonance positions were obtained both using resonance theory and exact computations. Comparison of
obtained resonance positions was performed. The changes in the position for the resonance peaks for
frequency- angular resonances as a function of the bottom model parameters were analysed. This work was
supported by the Russian Foundation for Basic Research (No.97-05-64712).

1. Introduction

The usefulness of a resonance analysis for
acoustic waves interacting with liquid layer and
elastic plates embedded in a fluid have been illus-
trates in [1-2]. Exact expression for the resonance
positions, widths, and strengths in the transmission
and reflection coefficients have been written explic-
itly in terms of material and geometrical properties
of the layer under consideration. The resonance
theory of a fluid layer including viscous effects has
been extended by R. Fiorito, W.Madigosky
H.Uberall in [3], by the introduction of a complex
sound velocity. In recent paper of R.Keltie [4] an
analytical model of a compliant elastic coating
attached to a submerged thin plate has been devel-
oped. The effects of incidence angle, frequency,
location throughout the coating, and coating prop-
erties on the signal response are evaluated. An ul-
trasonic method for determination of the complete

set of acoustical and geometrical properties of an
isotropic layer embedded between two known mate-
rials at two angles is described by A.Lavrentyev and
S.Rokhlin in [5].

In the present paper the resonance formalism,
previously developed in [1-3] for an liquid layer
(elastic plate) between two liquids, was extended for
the case elastic layer covering an elastic half-space.
Viscosity (absorptive effects) were took into account
by the introduction of a complex velocities, the
imaginary part of which is written in terms of an
absorption loss factor. Exact analytical expressions
for the reflection coefficient have been derived using
Thomson-Haskell technique. Inspection of exact
equations for the reflection coefficient shows that
resonance behaviour will exhibit when the real part
of the reflection coefficient denominator vanishes.
The characteristic equations were obtained and roots
of equations were found. Analytical expressions
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determined resonance positions  connected  with
compressional and shear wave velocities  were
obtained. Comparison of the resonance approach and

exacl computation was performed. Changes of

resonance peaks positions as a function of the bot-
tom model parameters were analysed on the fre-
quency-angular plane.

2. Model Formulation

The physical model used in the study of fre-
quency-angular resonance is shown in Fig.l; the
quantilies o, o are the sound speed and the density
of a liquid half-space. d, ¢, ¢, p are the thickness.

compressional and shear wave velocities, density of

the layer, € jw, €, Pw.are compressional and shear
wave velocities, density” of the elastic half-space.
Sediment parameters arc permitted to be constant
within elastic layer. The water column and clastic

¢y Po Water

dlciep Elastic Layer
CleCim Elastic Half-Space
Poe

Fig. 1. Geometry of the seabed model.

half-space (substrate) are assumed to be homogene-
ous and semi-infinite. In the layer, including the
substrate, the effects of the attenuation arc taken into
account by assuming shear (c,) and compressional
(¢;) wave velocities are complex c=c+ic; It is
requires complex wave numbers

K=o L-i(c/e )W 1+i(eife,)), @=2xf, f is frequency.
Attenuation within the water column will be ne-
glected. It is assumed that the displacement lields
U=U(U,,U;=0,U,) can be written in lerms of the
scalar ¢ and the vector potential yr:

U=gradg + roty = Vo + V . (1}

Components of the displacement in the layer for
rectangular coordinates:

U, =dolox-dyldz, U,=do/dz+dyidx, (2)

where ¢ and y are governed by the Helmholiz
cquations:

AQ + o ¢=0, Ayr+ B y=0, (3)
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o= k28, Bl= 8 E= w sin(B) = ¥ sin(8) = K,
sin(@,), 0 - incident angle. In addition to components
of the displacement given in Eq.(2) components of
the stress tensor, which are continuous across an
interface can be written in terms of ¢ and
potentials:

G =20 (P pfdxdz-0"ld2?),
6 ,,=- AP QA+ A+ 2 ol +0 k., (4)

where A and p are Lame constants connected with
compressional ¢=Y(A+21)/p and shear q:\f‘,u!p wave
velocities. Solutions of Eq.(3) may be written in
terms of potentials. describing compressional and
shear waves:

@ =@ cxplioz) + ¢ expl-ivz),
w=w" exp(ifz) + v exp(-ipz). (5)

For solution of the system ol equations W.Thomson
and N.Haskell [6,7] proposed the matrix method, in
which the system of linear algebraic boundary
cquations are replaced by the matrix equation: Z
0=DZ... where Z.. =[@".0,w ] is the row vector,
L=[exp(+10), exp(-id), exp(+in), cxp(—iﬂ}}'l' is the
diagonal matrix. Here the superscript T indicales the-
transposc of the row vector, D=Q A_i']A_i L is the
propagator matrix. A; is the characteristic matrix of
4-th order for a layer, Q is the matrix of 2-nd order
for liquid a half-space:

I g 1§ -1 1f |
A,:l 1L -1 15 15
M8y ZpEy  -ZpEp Zugp
|-2nte Zute -2uby -Zuty|
(6)
’V iLLL -1 C’,O
0= 5 2
|- pU - pD

where y=E-k /28, k=avc,

The solutions of the system of matrix equations
can be obtained by the Kramer's rule, . = A,/ A
(k=1,2,3), where 7y, arc reflection and refraction
coelficients, A is the main determinant of the system.

Exact expression for the complex reflection
coefficient was obtained and may be written in the
form
V=((A*-B? +C*-D)* +4(CB+DA)")/ (7
((A+B)+(C-DP)A™B* +C*-D*+2 i (CB+ DA)),

where functions A, B, C and D, contained in (7).
connected both material parameters of media and
angle-frequency-thickness variables d=od and n=Fd.
Variables & and 1 combined with positions of
frequency-angular resonances for compressional and



shear wave velocities. Expressions for the functions
A, B, C and D are not reduced due to its awk-
wardness.

Note it is possible to obtain position of reso-
nance’s minima and maxima of the reflection coef-
ficient by using the Ferma theorem for the analytical
expression (7). However, equation obtained after
differentiation of V can’t be solved analytically.

3. Resonance Formalism

Inspection of the exact equation (7) for the re-
flection coefficient shows that resonance behaviour
will exhibit when the real part of the denominator
vanish, i.e., when the characteristic equations are
satisfied:

(A+B)+(C-D)* =0, (8)
or

AZBI+CLD? = 0. (9

If the real part of the denominator vanish the phase
of V equal to +n/2.

The Fig.2 illustrates this fact. In the Fig.2 modulus
and phase of reflection coefficient are shown in the
form of isolines.

After variables separation the characteristic equation

(8) may be written in the form:

K| cos(8) cos(n)+K; cos(8)* cos(m)” +
Kisin(8)sin(m)+K, cos(8)” +Ks cos(m N

Kgcos(d)cos(n) sin(d) sin(mn)+K;=0, (10)

where constants K, K., Ks, Ky, K¢, Ky, Ky are
connected only with material parameters of media.

In the case of the elastic layer covering elastic half-
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space the Eq.(10) may be solved separately for 8 and
n variables. Solutions will determine the positions of
resonance for two types of waves at the frequency-
angular plane. The solutions for & and 1 may be
obtained by solving of additional 4-th order
equations:

(-K,cos(1) + Kacos()® + Ky + Ks cos(m)” + KX +
(2K;sin(1]) - 2Kgeos(m)sinm) X + (-2K; cos(n)” -
2K, + 2KscosM)’ + 2K;)X? + (2Kssin(n) +

K eosM)sin(m)) X+ K cos(m)+K, cosin)® +K,+ K
cos(m)* +K; )=0, (11)

(-K,c08(8) + Kacos(8)™+ Kacos(8) + Ks + KX +
(2K;sin(8) -2Kqcos(8)sin(8) )X + (-2K; cos(8)” + .
2K,cos(8)® - 2Ks + 2K)X® + (2Kssin(8) +
2Kecos(B)sin(dNX + K cos(8)+K, cos(8) +K4

cos(8)+Ks+K;)=0. (12)
Then & and 1 may be found as

8 =2arctan(X),

N =2arctan(X), (13)
8,=0+2mn,

N.=n+2nn, n=0,1,2,..., (14)

X are roots of Eq.(11), Eq.(12) for 8 and 1 respec-
tively, n is the resonance number. These solutions
will true in broad range of grazing angles 6.

Resonance expression for the reflection coeffi-
cient may be obtained as a sum of resonance terms,
both in the frequency variable and in the angular
variable. Mathematically, it is correspond to Te-
taining only linear terms in the expansion of ex-
pression for V in the Taylor row around their reso-
nance values 8, .and 1,.

Grazing angle, deg.

1000 3000 5000 7000 8000
Frequency, Hz

Fig.2 The modulus (a) and the phase (b) of the reflection coefficient

4. Frequency and Angular Resonances

Results of numerical simulation of the exact re-

flection coefficient (7) are shown in the Fig.3 on the
frequency-grazing angle plane (ci.>cgp>c;). The plane
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wave reflection coefficient consist from regular
sequence of minima and maxima connected with
resonances. Resonances of the reflection coefficient
are functions of frequency, grazing angle and seabed
parameters. Note that frequency resonances may be
observed at very low grazing angles 8=1-2° (Fig.3).
It can result in increasing of sound propagation loss
in the shallow sea.

Fig.3. Modulus of reflection coefficient, plotted as a
function of frequency and grazing angle.

The influence of absorption on resonance peaks
of the reflection coefficient illustrate the Fig4.
Results of computation for a 0.7 m-thick sediment
layer using the actual absorption coefficients in the
layer and layer shear wave velocity (v, =0.01 dB/m,
v, =0.001 dB/m, ¢=250 m/s) presented for two
grazing angles 8 =3° and 0=61° (curves 1 and 2
respectively).

1M

2000

0.0 1000 3000 4000 F,Hz

Fig. 4 Influence of absorption on resonance peaks

The absorption decrease the resonances peaks when
frequency increase, due to the dissipation of encrgy
in the layer. Frequency resonance width I" decrease
when angle increase (I'~1/8). The absorption also
decrease the angular resonances peaks. Angular
resonance width 7y increase with increasing of
grazing angle.
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At normal incident angle there is not tangential
components of compressional wave on the water-
sediment boundary and shear wave can’t be exited.
So there is no influence of layer rigidity on reso-
nance peaks at normal incident angle. Investigation
of influence of sediment and substrate shear speeds
on sound reflection coefficients at low grazing an-
gles actual for study of sound propagation in shallow
water. Numerical research of influence of sediment
and substrate rigidity on the reflection coefficient
resonances for fixed grazing angle 0=1° show that
frequency displacement of resonance peaks are
observed when the shear speed in the substrate c,.. is
varied (Fig. 5). This displacement principaily may be
used for reconstruction of the substrate parameters.

Fig.5. Dependence of resonance position from share
speed in the substrate for fixed grazing angle 6=1".

5. Comparison of Resonance Approach and Exact
Computations

Comparison of resonance approach and exact
computations was performed for the elastic layer
lying on the elastic substrate. The resonance posi-
tions on the frequency-angular plane were calculated
using exact expression (7) and resonance expression
(14) (n=0). Resonances associated with & were
calculated for three different ¢ in the layer. Exact
computation of resonance position shown on the
Fig.6 as solid line and resonance approach cal-
culation shown by markers.

The curve 1,2,3 correspond to ¢;=1455 m/s, ¢;=1520
m/s and ¢=1475 m/s respectively. Computation were
fulfilled for the grazing angles low than critical.
Dependence of resonance position from ¢, is clearly
observed.
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Fig. 6. Resonance position on angle-frequency plane
for three different ¢, Solid line — exact com-
putations, markers — computations using resonance
formalism

6. Conclusions

The exact expression for the reflection coeffi-
cients have been obtained with the Thomson-Haskell
technique. Viscous (absorptive) effects within the
sediment and substrate were incorporated in these
equations by introducing a complex compressional
and shear wave velocities the imaginary part of
which is written in terms of an absorption loss factor,
in turn required complex wavenumbers. Inspection
of the exact expression for reflection coefficient
shows that resonance positions may be obtained
when the real part of the denominator vanish, i.e.
when the characteristic equations for the resonance
positions are equal to zeros. The behaviour of the
frequency-angular dependences for exact values of
the reflection coefficients was studied. Influence of
the effect of absorption and bottom characteristics
influence on the resonance structure was analysed.
Particular attention was devoted to low grazing angle
resonances. The influence of the shear speed in the
sediment and substrate were investigated. The
resonance positions on the angle-frequency plane
were calculated using exact expression and
resonance expressions. Comparison of resonance
positions obtained from the resonance approach and
exact calculations was performed and good
agreement was obtained. Dependence of resonance
position from bottom model parameters was
analysed.
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