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ABSTRACT

The beam equation for a sound beam in a diffusive medium, called the
KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation, has a class of solutions,
which are power series in the transverse variable with the terms given by
a solution of a generalized Burgers' equation. A free parameter in this
generalized Burgers' equation can be chosen so that the equation describes
an N-wave which does not decay. If the beam source has the form of a
spherical cap, then a beam with a preserved shock can be prepared. This is
done by satisfying an inequality containing the spherical radius, th; .'-J-wave
pulse duration, the N-wave pulse amplitude and the sound velocity in the
fluid.

A nonlinear limited sound bearn propagat-
ing in the x direction is described by the
Khokhlov-Zabolotskaya-Kuznetsov ar KZK
equation [1], [2] for the fluid velocity v:

The notation used is:
Co = sound velacity af the undisturbed

fluid.
r=t-.E..

Co
I = ~, i.e. ratio between heat capacities

Cu
of the fluid.

b = K( 1.. + 1..) + ( + i3TJ, where K is the
Cp et}

heat conduction coefficient and (, TJ are the
viscosities.

po = density of the undisturbed fluid.
The beam is assumed ta be cylindrically

symmetrical. We make the substitutians

(:3)

and intraduce the dimensionless variabies V,
0, X, R according to the fermulas

V = ~ (4)
Vo

()= urr (5)

x - Xo = ;3w
2
vox (6)

Co

R=e, (7)
a

where a is the bearn radius at the bearn
source, situated at x = O.

Insertion of (2)-(8) inta (l) gives the di-
mensionless beam equation

The twa dimensionless constants E and N are
grven as

bw
(9)(')'~) E = 2f3covopo
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The parameter € is assumed to be consider-
ably less than unity.

With the substitution

(10) For k =f:. -1 the equation (13) will be trans-
formed. Using the substitutions

w = -x-kVo

e = _l_xk+l
k+1

(14)

(15)

(11) in (13) we obtain

"We + WW8 - €{(k + l)e} -;en W08 = O. (16)
the circular symmetric beam equation (8) has
the power series solution

V(X, O, r2) = Vo(X, O) + k;~ Vóo(X, B)
l k(k-l) r4 lI' (X e)+2i 2 4X2 YOBB ,

+~kr6{ (k-lMk-2) sl3 V0888(X, e)
- kil sl2 (Vo8 Vó80)8}

+ikrS{ (k-l)(k~/)(k-3) 16~4 Vo088(X, B)
+ kt/ 16~2 [-(Vó8 Vo88)88X
-(3k - 5)t(VóeVóoo)ee

+(Vo(Vo8 Vo(8)0 )88
+ć:(VOOVoOO)OOBB]}+ .... (12)

The function Vo(X, e) is a solution of the gen-
eralized Burgers' equation

k
Vox - X Vo - Vo VoB - €Vooo = O. (13)

The number k is arbitrary. Terms of the order
r2n+2 in the series (12) are calculated from
terms of the order r2n using the fact that
terms of the order r2n+2 in Vo at the right-
hand side of (8) are compensated by terms of
at most the order r2n in Vo at the lefthand
side of (8). The speclal case k = -1, lead-
ing to the expansion (20), is that treated by
Sionoid [3].
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For arbitrary k =f -1 the wave equation (16)
formally describes plane waves propagating
in a medium with variable viscosity.

For k = 1 the following equation is ob-
tained from (16):

t:
We + WWO- vI(20 Woo = o. (17)

Generalized Burgers' equations of the type

We + WW8 - ć:G(e)W08 = O (18)

are treated by Crighton and Scott [4]. They
show that the N-wave boundary condition

W(I,B) = e, lei < l
W(l,B) = 0, IBl> 1 (19)

leads to the "outer" solution

w(e)(e, B) = Ź + o(ć:n), IBl < vle

w(e)(e, B) = 0, IBl> vle. (20)

An "inner" solution to (18) in the neigh-
borhood of B = vle is found by asymptotic
matching [4]. For G(e) = (2e)-~ this solu-
tion is

Wi(e, B*) = 2~e {l - tanh 8'-~2J;-eł)}
+ ć:W; + ..., (21)



where
0* = O - V~. (22)

�

It can be shown that the coefficient v(~~) of
the second derivative term in (17) has exactly
the necessary decreasing behaviour with ~ for
giving a nongrowing shockwidth, which ac-
cording to (21) is 2V2c

A boundary condition for the KZK equa-
tion (1) or (8) can be prepared in order to give
a preserved shock solution. This shock solu-
tion will be found by a solution of (17) used in
the expansion (12) with an appropriate value
of k. The original N-wave is generated on a
spherical concave cap, whose surface has the
equation

The cap surface is that part of this spherical
surface which fulfils the inequality

(24)

Assuming that the spherical radius d of the
cap is much greater its its intersection radius,

d» a, (25)

the cap equation is approximated:

y2 + Z2
X ~ =----

2d
(26)

depends only on the distance from the beam
axis. The equivalent boundary condition at
x = Othen becomes:

v(x = O,p,t) =

v(x = O, p, t) =
(Et)F( 1~)vog a2 wt + "2 Co d ,p < a

0, p > a, (27)

where (2) is used. The function g is constant
for p < a and zero for p > a.

The function F in the equivalent boundary
condition (27) now has to be an N-wave:

F(B) = -B, IBl < 1
F(B) = O,IBI > 1. (28)

It can be shown that, for k > 0, the boundary
condition (27) is compatible with the series
solution (12) if

d=(k+1)c6T
kf3uo '

(29)

where T = W-l. The result (29) is the main
result of this investigation. The lowest k
value, for which the shock width does not
grow during the propagation of the N-wave,
is k = 1. An inequality, which has to be ful-
filled for an N-wave, created on a spherical
cap with radius d, of duration 2T and ampli-
tude Uo thus is

d < 2c5T
- f3uo'

(30)
Following Ystad and Berntsen [5] we formu-
late a boundary condition on the plane x = O if the shock shall not decay during the prop-
equivalent to the boundary condition on the agati,on of the wave.
curved cap surface. We assume a boundary
condition in which the wave phase is constant
on the cap surface and the wave amplitude
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