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ABSTRACT

The paper presents examples of applying the saddle point method (called also the method
of the steepest descent path) to som e problem s of acoustics. The method is shortly re-
minded in its basie form and more complex options which, however, improve the results
and widen the range of eventual applieations. As examples the phenomena of reflection
and transmission of the spherical wave at a fluid-fluid interface and the far field radiated
from the circular duet are discussed.

INTRODUCTION

In the process of mathematical description
of a physical phenomena we often apply so-
phisticated mathematicaI methods as integral
transforms, integral representation etc, which
may darken physical interpretation of the re-
suIts obtained.

The aim of the paper is to present the sad-
dle point rnethod as an useful tool to solve
physical problerns. The exampIes (reflectionj
transmission of sound through a plane interface
separating two fluids, far field radiated from
cylindrical duet), all of considerable theoreti-
cal and practical meaning, have been chosen to
demonstrate the large spectrum of advantages
from applying the saddle point method, which
not only simplifies mathernatical formulae but
also allows for elear and meaningful physical
interpretation.

THE SADDLE POINT METHOD

The saddle point method is used to calcu-
late approximately contour integrals ofthe type
[1]

1(>') = J G(z)e>.g(zldz, (1)

C

in the complex pIane z, where >. is real param-
eter and G(z), g(z) - analytie funetions. The
rnethod consists of three main steps:

10 finding one or more saddle points, defined
by the criterion

g'(z) = O at z = ~;
2° deforming, respecting all necessary rules, the
eontour of integration into the steepest descent
path, which is defined as the path in the com-
plex plane that passes through the saddle point
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~ and along which the real part of g(z)
(Re g(z) = gR) decreases most rapidly. By
a property of analytic functions Im g( z) = g I

remains constant on this contour.
The steepest descent path can be defined

by means of a real parameter s

(S2 because at each point z ::/= ~, g(z) < g(O,
what ensures real s). Equating the last formula
with, limited to the second derivative, Taylor
series expansion for g(z) about the saddle point
ć: g(z) = g(ć)+g'(~)(z-O+ ~gll(0(Z-~)2 and
taking into account g'(O = O we can express
the parameter s by variable z

s = .; -g"(Oj2(z - O. (3)

Denoting the beginning and the end of the eon-
tour C by S1 and S2 we obtain

S2
[(>') = (_2jgfl(O)łeiAgjWjeA(gR(O-S2)G(s)ds;

30 performing integration. The integrand, es-
pecially for large positive >., is srnall everywhere
except the vicinity of the saddle point, ~, (s ==
O). For slowly varying function G(s), assume
G(s) ~ G(s = O) = G(Oand extend the in-
terval into (-00, +00). As a result the Gauss
. +00 2 •
mtegral f e-AS ds = ...;;rrx appears. Fmally,

-00

we can write

-27r eAg(OG(C).
>.g"(O "

The form ula (5) is often called the first or-
der saddle point approximation. If we deal
with integrals strictly fulfilling the above listed
conditions we can easily evaluate the integral.
Unfortunately, we hardly com e across such an
ideal situation in practice. On the centrary -
usually many difficulties arise, as multi-valued
functions, for which we have to construct Rie-
mann 's surface and on which we have to eon-
sider not only the singularities but also the
branch point s and branch cuts. If we want

I(>') =
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(2)

to deform a contour of integration on the Rie-
mann surface we have to take precautions - the
beginning and the end of the path must lie on
the same leaf. In acoustical problems we often
deal wit h double - valued functions (containing
square roots) and properly deformed eon tour
of integration must cross the cut lin es zero or
even number of times. Quite often >. parameter
is not large everywhere or G( z) is not slowly
varying function near the saddle point. For
these reasons some improvements of the basie
method are introduced, three of which will be
discussed below.

Inclusion of the argument of the G(z)
function into the exponential function.

This is the easiest way of improving the ap-
proximation and it is quite e:fficient in some
cases (as an example we will discuss the case of
refl.ection of waves at the incident angles larger
than the critical, where the refl.ection coe:fficient
is a complex number of moduli 1). Using the
relation G(z) == IG(z)1 exp(ir) we obtain the
function in the exponent in the form

(4) 91(Z) == g(z) + (ij >.)r(z), (6)

and the saddle point criterion

g'(O + (ij>.)r'(ć) = O, (7)

from which we obtain the integral in the form

I(>') = -27r Ag(O
>.g"(O + ir"(o e G(e)· (8)

(5)

In this approximation the phase of the func-
tion G( z) affects the saddle point location and
the steepest descent path. This variant of the
method is suitable especially for functions of
steady amplitudę and varying argument.

Inclusion of the G(z) function into the
exponential function.

In this we take one step further by allow-
ing both - the amplitudo and phase of the G(z)
function to influence on the saddle point 10-
cation and the steepest descent path writing
G(z) = In(expG(z)). This variant is especially
useful when the G(z) function is not varying



slowly and can be compared wit h the exponen-
tial function. Incorporation of the G( z) into
the exponential function leads to the foUowing
form of the exponent [6]

g2(Z) = g(z) + (l/A)lnG(z), (9)

and the saddle point criterion

1 1 G'(~)
g (~) + ~ G(O = O , (lO)

which results in the formula for the integral:

I(A) = -211" G(O '\g(O (11)
Ag" + GGIICłG1)2 e ,

where for simplicity it was not indicated that
all terms are taken in the saddle point z = ~.
From the above we see that the saddle points
are, in general, complex.

Second and further approximations.

As was told before the basie formula (5) is
often called the first order approximation. To
obtain the second one we have to expand the in-
tegrand G( z) into the Taylor series in the neigh-
bourhood of the saddle point ~ (what is equiva-
lent with expanding G( s) in the neighbourhood
of s = O): G(s) ~ G(O) + G'(O)s + łG"(O)s2,
what leads to

x [~G(O + ~ (g~(~)) G"(O;,,]. (12)

It is worth mentioning that the formulae de-
rived in this section are valid under the as-
sumption that in the saddle point ~ the second
derivative g"(O =f O, otherwise the obtained
integrals become infinite. The case g'(O = O,
g"(O = O cannot be treated by means of this
method.

PLANE-WAVES REPRESENTATION OF
THE SPHERICAL WAVE

In the following we wilI discuss the problem
ofthe sound field at a plane fluid-fluid interface.

The field is generated by a point source located
in the upper half plane the lower medium is
of the higher velocity (air/water, waterysand},
what results in the phenomena of total reflec-
tion above the critical angle. One of the eon-
sequences is appearance of a lateral wave, weU
known in shallow water acoustics and seismol-
ogy.

The first step is to present the plane wave
integral representation of a spherical wave.

Assume a point, sound source of monochro-
matic wave, which acoustic potential at a dis-
tance R from the source is ą>o( R) = eikR IR,
where k = wic is the wavenumber, wit h w de-
noting the wave frequency and c the speed of
sound. In the Cartesiań co-ordinates (x, y, z)
we can mathematically express the potential of
a spherical wave as a surface integral [1]

(13)

where R2 = x2 + y2 + z2 and k2 = k; + k~ +
k;. The integration is performed over the entire
plane and we allow for imaginary values of kz.

In the spherical co-or dinates we can write Eq.
13 in a form:

eikR
-- = ik
R

1f .
'2-tQOJ Jo( kr sin B)eikR cos o cos 00se,

o
(14)

where r = R sin Bo, JoO represents the Bessel
function of order zero. As kz = k cos (}for real
k, changing in the limits O :S k, :S k we have
real values of O changing from 11"12 to O. For
imaginary kz, with increasing positive imagi-
nary part we obtain the range of () from I to
I-ioo (we choose -ioo for physical reasons).

The potentiaI of a spherical wave is possi-
bly expressed by means of the Hankel function
H~l). There are two main reasons for which we
will stick to that form - the symmetry prop-
erties of the new contour of integration and
the simplicity of asymptotic form of the Han-
kel function. Applying the identity Jo(z) =
HH~l)(z) - H~l)( -z)] and introducing under
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the integral the asymptotic form for the Han-
kel's function for Izl ~ 1,

(1) 2 l . 7r l '"Ho (z) = (-)2 exp t(z - - )(1+ -. + ...) =
7rZ 4 8u

~(~)t expi(z- ~),
7rZ 4

we obtain in the first approximation

eikR
--=c

R
-~+ioo

where c = Jik/27r R sin 00, In the last formuła
we can easily recognise the form suitabłe for
applying the saddle point method. The spheri-
cal wave is decomposed into an infinite number
of individual plane waves incident at the inter-
face at an angle (). Note that to each of these
contributing plane waves we can apply the sim-
ple rules of refiection and transmission (Snell's
law).

FLUID - FLUID INTERFACE

In the following we will consider the reflec-
tion jtransmission of a spherical wave at a fluid
- fluid boundary [2, 3, 6J.

~50U~a
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Fig. 1. Geometry of the reflected field.
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The point SOUTce(Fig. 1) is located at the
height Zs in a medium characterised by the den-
sity (lI and the speed sound C1, which in the
lower medium are equal to i22, C2, respectively.
We assume C2 > C1. The pIane wave refiection
coefficient is [4J

(15)
V(O) = mcosO- y/n2 -sin2e,

m cos O + Jn2 - sin 2 O

where m = i22/ i21 and n = cd C2. It is useful
to remind that in the considered case n < 1, so
the critical angle, at which the total reflection
appears, is defined as Ocr = aresin( n).As long
as we deal wit h the homogeneous media n and
Ocr are real. We can introduee the attenuation
constant by including an imaginary part to the
sound speed, what results in cornplex n, wit h a
positive imaginary part. At the moment let us
foeus on the case of real n and Ocr' Applying
Eq. (16) to the reflection phenomena we can

( 17)

(16)

write

rr
2-1=

1>rej(R,Oo) = c J eikRcos(B-eo)V(O)~dO,

-f+ioo
(18)

whieh is the basie formula for further investiga-
tions. Note that apart from using the asymp-
totic form of the Hankel function no approxi-
mations were made till now.

Comparing (18) with (1), aceording to the
basie form of the saddle point method we ob-
tain

A = kR, g = i cos(O- (0) , G = V(O)~,
(19)

and the saddle point occurs at ~ = 00.

We have to cheek if the V (O) function fulfils
the required eonditions. If we regard angles
of incidenee O < Ocr, V (O) is real and slowły
varying function, thus

(20)

A question arises if the last form ula is ful-
filled for the angles of incidenee larger than
(although not very close to) the critical angle.



The steepest descent path must be obtained
by a smooth deformation of the initial contour,
sa for Bo > Bcr it would cross the branch cut
(Fig. 2.). '

Jme

i2e. e\
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Fig. 2. The path of integration for different
value of the angle of incidence: curve 1 for
B < Bcr, 2 for O > Ocr'

In the first approximation, starting from (18)
we obtain, for 00 > Ocr

+ C J eikRcos(lIl1o)V(O)~dO, (21)
L

where L denotes the contour along the branch
cut. The first integral represents geometric
(Snell's) wave, the second - lateral wave (Fig.
3).

Moreover, for B > Bo the V(B) function becomes
com plex V (B) = IVIei.p( II) � Including the ar-
gument 1/;(B) into the exponential function we
obtain [6]

g = i cos(B - Bo) + k~ 'ljJ(B) , G = IVIJsI;O,
(23)

while in the most exact variant , when ampli-
tude and phase of the reflection coefficient in-
fluence on the saddle point location, we write
V(B) = exp(In V(B)), so

. l ~
g = lCOS(O - Oa) + kR In V(O) , G = vsinB.

(24)
This method is especially suitable for rapidly
changing V (O), especially in the vicinity of the
saddle points, which, unfortunately, could be
derived only by means of numerical computa-
tions. They are complex and could appear in
pairs what additionally complieates the steep-
est deseent path [2, 6].

J

Fig. 3. Contribution of different waves at the
observation point in the upper (Pl) and lower
(P2) medium; 1 - totally refleeted wave, 2 -
lateral wave, 3 - transmitted wave,

Anyhow, independently of the steepest de-
scent path met ho d we are following, for an-
gles of incidenee exeeeding the critical angle,
Bo > Ocr, we obtain the refleeted field eomposed
of two faetors - the wave reflected along the
Snell's law and the lateral wave.

THE FAR FIELD OF A CIRCULAR DUCT

Considering harmonie vibrations, the l-th
mode acoustical potential of a semi-infinite eylin-
drical duet of radius a, wit h the outlet at z = O
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takes, in the cylindrical eo-ordinates, the form spherieal wave multiplied by the direetivity fune-
[5]: tion

<Pl(fl,Z) = :iJ dwexp(iwz)vFl(W)X dl('/J)::::: a
2

ksin'/Jh(kasin'/J)Fl(kcos'/J). (29)
G

H~1)( Vf! )J1( va);
Hi1)(va)Jo(ve);

e>a
e<a

where w, v are the axial and radial wavenum-
bers, respectively, and w2 + v2 = k2, Fi( w)
is the Fourier transform of the discontinuity
(jump) of the petentlal on duet 's wall. The eon-
tour of integration consists of the real axis and
the loop around the point w = -,I, whieh is
the only singulanty point of the funetion A( w)
[5].

To apply the saddle point method to calcu-
late the acoustic field outside the wave - guide
we introduee the complex variable O' as
w = k sin O' and make use of the asymptotie
form of Hankel 's function (15) what leads to

<P/(R, '/J)=ceT J WI(O, '/J)eikzsin(/lH)~dO,

Gl

where

WI(O,'/J) = h(kaeosO)F/(ksin8)x

(1\
X cosB 1+ ) ;\ 8ikR sin '/J cos O

(27)

and c =eonst. The eontom CI starts at
7r/2 - ioo, passes near 7r/2, cuts the real axis
at O and, near -7r /2, goes asymptotically to
-7r /2 + ioo, surrounding in the meanwhile the
point -Ol = aresin( -,I/k).

Following the rules of the steepest deseent
path method wecome to the result:

(25)

To obtain the second approximation we have
to expand the integrand WIU},1?) into a series
in the neighbourhood of the saddle point.

CONCLUSIONS

The far field due to refiectionj transmis-
sion of the spherical wave at a plane interfaee
between two homogeneous fluids has been ex-
amined by means of the saddle point method
allowing for simple interpretation of the field in
terms of geometrie and lateral waves. Thus the
saddle point analysis provides a ray theory in-
terpretation of the refleeted/ transmitted field
. Applied to the problem of the far field of a
circular duet results in obtaining the formula
for the directivity funetion. It seems that the
met ho d allows for simple physical interpreta-
tion of the results obtained.
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