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ABSTRACT
A spring model for the simulation of the propagation of ultrasonie pulses through perfect ar imperfect
interfaces is proposed in the framework of the local interaction simulation approach (LISA). To demonstrate
the applicability of the technique (which is particularly suitable for parallel processing) a few examples
of numerica! simulation of pulse propagation through interfaces with a delamination are presented and
cliscussed.

INTRODUCTION
A local interaction simulation approach (LISA) for
studying the propagation of ultrasonie pulses in in-
homogeneous l-D, 2-D and 3-D media has been
recently proposed [1-4]. The method is designed
to take fulI advantage of massively paralIel com-
puting, such as provided by the Connection Ma-
chine. The most important feature of paralleI pro-
cessing, with respect to applications to materials
studies, is the mutual independence of the proces-
sors. By putting them into a one-to-one correspon-
dence with the "cells" of the specimen (properly
discretized), one can assume that each celi may
have different physical properties, since the corre-
sponding processors are mutually independent. Ali
the material properties are assigned as initial data
to each processor via a front-end computer. Thus
(almost) arbitrarily complex media can be treated
without increasing the computer time. Such a cor-
respondence is at the basis of the LISA technique.
The local interaction between celIs may be trans-
ferred directly to the processors, bypassing the par-
tial differentiaI equation. Iteration equations may
then be obtained directly from heuristic consider-
ations (e.g. a spring model in the present paper).

In general, Finite Difference Equations (FDE)
provide a very convenient to ol for the solution of
partial differential equations in media, in which

the physical properties are homogeneous ar vary
continuously, such as in Epstein layers. However,
when boundaries between different materials are
present, the use of FDE's may be justified only as
an approximation. In fact, for the conversion of
derivatives into finite differences, a "smoothing" of
the variables across the interfaces is required and,
if the discontinuity is sharp, severe errors or ambi-
guities may result [2,5].

By contrast, a Sharp Interface Model (SIM), ap-
plied in conjunction with LISA, allows an exact
treatment of any kind of heterogeneity. By assum-
ing perfect contact, i.e., imposing the continuity
of displacements and stresses at the interface be-
tween different media, iteration equations can be
obtained directly for any kind of interface.

The purpose of the present contribution is to
extend the LISA technique to the case of speci-
mens having interfaces with imperfect contact be-
tween different materials. In fact the mechanical
integrity of interfaces is of paramount importance
in determining the serviceability of many structural
components. As a consequence, a nondestructive
characterization of interfaces, e.g. by ultrasonic
techniques, is requisite for the prediction of the
strength and life expectancy of a specimen (to-
gether, of course, with an analysis of the relation
between interface flaws and mechanical properties
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Figure 1: Spring Model for a generic gridpoint P.

of the specimen).
A special issue of the Journal of Nondestructive

Evaluation [6] has been recently devoted to theo-
retical and experimental models of ultrasonie wave
interaction with imperfect interfaces. Therefore we
refer to the many articles therein for a thorough
review of the topie. We restrict ourselves here to
a brief description (in Sec. 2) of the above men-
tioned spring model, which can be used to derive
heuristically the iteration equations for the ultra-
sonie pulse propagation, and of its extension to the
case ofimperfect contact interfaces. Then in Sec. 3
we present and discuss a few examples of numerical
simulations of pulse propagation through an inter-
face with a delamination. The detailed formalism
and more general examples of simulations will be
included in a forthcoming article [7].

THE SPRING MODEL

An alternative procedure to the SIM treatment dis-
cussed in the Introduction is to model the local in-
teraction among the discretization grid nodes by
means of elastic forces. Fig.1 gives a pietorial rep-
resentation of the spring model, by depicting the
interaction of a generic grid point P with its near-
est neighbours, labelled with integers from 1 to 8.
If P happens to be an interface point between dif-
ferent materials at the right and left of the vertical
through P, then the two vertical springs (P - 6
and P - 8) are each split into two separate springs,
according to the physical properties of the corre-
sponding materials.
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Figure 2: Splitting of the gridpoint P into four
subnodes.

Case Al A2 111 112 Pl P2
1 4.4 56 2.09 26 1.2 2.7
2 4.4 9.8 2.09 6 1.2 1.6
3 4.4 2.1 2.09 1.5 1.2 3

Table l: Lamś constants and densities of the two
materials for each of the three bilayers considered.

More generally, if P is a crosspoint at the inter-
section of two orthogonal interfaces separating four
different materials, then all four horizontal and ver-
tical springs (P - 5, P - 6, P - 7, P - 8) are split
each into two springs, corresponding to the physical
properties of the materials in the four quadrants.
It is thus possible to obtain the iteration equations
for the displacements of a pulse propagating into a
discretized medium (which can be arbitrarily com-
plex, since
each gridpoint may well be a crosspoint). The de-
tails of the derivations of the iteration equations
are omitted here for brevity.

As a further step, one can also model the inter-
face contact by means of additional springs: see
Fig.2. The nodepoint P is split into four "subn-
odes" Pl, P2, P3 and P4. Different kinds of imper-
fect contact can be modeled by assuming that the
springs connecting the four subnodes are weakened
or broken. As a first element ary application we
consider in the next Section the case of an inter-
face delamination, in which all the subnode springs
are broken, except the vertical ones, for the entire
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Figure ~: Time evo.llItion plots of the puJse dispJacement.s at different sections of the specimen for a
perfeet. mterfaee a) rnput surface (x = O), b) x = 30, e) at the interfaee (x = 50), d) at. the exit surface
(x = 70).

length of the delamination.

RESULT AND DISCUSSION

We consider a bilayered specimen with a vertical
interface between two different materials. Three
cases have been studied: they are summarized in
Table l.

Fig.3 represents the time evolution of a gaus-
sian source pulse injected on the left surface of the
bilayer (Fig.3a). In Fig.3b (before the interface)
we begin to see the mode conversion of the source
pulse. From the left we see first the longitudinal
pulse front, then another l-pulse reconverted from
the shear pulse (obtained by mode conversion from
the original l-pulse), then the mode converted s-
pulse in a complex pattern. In Fig.3c (at the inter-
face) we only observe the original and reconverted

l-pulses; shear pulses come at later times. The pat-
tern becomes more complex at larger values of x
(Fig.3d) and t.

FigA (left plots) shows the time evolution plots
of the pulse displacements at the exit surface for
a specimen with an interface delamination in the
three cases summarized in Table l. For a bet ter
representation of the results the grayness scale is
not kept constant in the various plots. The right
plots of FigA show the "signatures" of the interface
delamination, i.e. the difference between the plots
with and without defect. Interesting plots may be
observed, which can be used for the purpose of in-
terface characterization.

Figures 5 and 6 display a different representa-
tion of the pulse propagation in the cases l and 2,
respectively. Instead of time evolution plots at the
exit surface, they show "snapshots" at fixed times
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Figure 4: Ti me evolut ion plot s at the exit surface for a specimen with an in terface deJamination of
length 1= 21f for th ree diffe ren t cases (a,b,e). The plots a', b', c' represent th« differences between the
plot.e a, b, c and thc eorresponding plo te for pcrfcct int.crfaccs.
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Figure .1); Snapshots of a pulse propagat ing in a Al-plex iglass bilayer (case l) for int.erface delarninations
of different length l.
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Pigure 6: Snapshots of a pulse propagating in a bilayer (case2) for interface delaminations of different
length l.

of the whole displacemets amplitude field. Both
the actual snapshots and the pulse "signatures"
are shown. Again some very interesting patterns
develop.
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