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Abstract

This paper presents a test of three following classifiers: minimum-distance cIassifier, feed-forward
neural network with backpropagation Ieaming scheme and neuro-fuzzy classifier based on NEFCLASS
architecture. They have been applied to the sea bottom type cIassification task over different input spaces.
The experiment proved high efficiency of the minimum-distance cIassifier and the neura! network,
NEFCLASS performance had been rather poor. Generalization properties of those classifiers are also
investigated. Additional concIusions conceming classifiers topology are presented.

Introduction

One of the possible approaches to the seabed
classification task is to construct such a decision
function (classifier) which could divide an input
vectors space in such a marmer that a correct
generalization is obtained as a result. Usually, a
classifier is built as an approximation of som e prior
knowledge which composes a set of training points. If
a correct generalization is obtained, one can
successfully use a classifier for identification of
unknown data.

Generally in any seabed classification system
cIassifiers are present, but usually their domain (input
space) is a space of signal parameters. Recently, many
researches [1],[2],[9] put a lot of effort into finding
such a set of signal parameters which form the input
space where bottom type classes are easily separabie
and a simple classifier can handle the task of
recognition. However, it could happen that such a
c1assifier is more susceptible to errors. Commonly it is
known that they can be caused by the following
features ofthe input space:

l. The input vectors may be inadequate for
distinguishing between the different classes.

2. The input vectors may be highly correlated.
3. The decision boundary may have to be curved.
4. There may be distinct subclasses in the data.
5. The input space may just be ton comp!ex.

It is known that more advanced supervised
classifiers (like MuIti Layered Perceptrons (MLP),
Neuro-Fuzzy Systems and Radial Basis functions
RBF) can handle the classification task (even with the
above limitations) with higher accuracy, since they
can approximate any continuous mapping on Rn and
have sufficient abiJity to generalize (extrapolate). The
problem that arises most often when application of
those systems is considered, is the choice of the
appropriate classifier topology. Commonly the
quantity called VC(Vapnik-Chervonenkis) - dimension
[5J can be used to estimate (input space) separation
ability for the given family of classifiers. However,
the optimal topology for a given classification task is a
tough problem, which can only be solved
experimentally.
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Review of classifiers tested in the experiment.

In this experiment generalization properties of
three following classifiers have been studied:
minimum-distance classifier, feedforward neural
network with backpropagation leaming scheme and
neuro-fuzzy system NEFCLASS. The experiment
was made over a set of 3714 bottom echo pulses,
classified in four classes : rock, sand, soft-sand, soft-
mud. A benchmark of selected classifiers over
different input spaces is presented.

Feed-forward neural network with a back-
propagation learning schema.

The algorithm of error backpropagation is the
basi s of current work on neural networks training. The
algorithm tells us how to change the weights wi,) in
any given feed-forward neural network that is
supposed to leam the training set Z [6]. The gen era!
form of mapping which is the feed-forward neural
network is given below:

In a generał case any classifier can be understood F: R" ~ s'
as a certa in function: where:

F:X~D
where:
X - a set of classified objects
D - a set of classes (frequently extended by an
additional "unknown" class" which is assigned
to a given vector x when the vector x cannot be
explicitly classified into one ofthe remaining
cJasses).

Usually the term supervised classifier denotes a
classifier whose method of construction requires a
certain set of pre-classified objects from space X, i.e. a
certain sequence of pairs l={(Xj,dj) E XxD; i=l..k}.
The neural networks described be!ow and the
NEFCLASS system find the form of the function F
through approximation so that:

. 'ej F(x;) = d., (x;,d;) EZ .
,~l...k

In the case of the minimum distance classifier
function F is constructed directly on the basis of the
training set Z.

Minimum - distance c1assifier.

This is one of the simplest classifiers. To classify
an unknown input vector x is to assign this class d, E

D «xi,d;) E l) for which the distance [[x; - x[[ (the
experiment assumes Euclidean distance) is shortest. A
detailed scheme ofthis classification is the following:

l. For each pair (x;,d;) E l the distance lix; - xii is
calculated.
2. If there is exactly one vector Xp E X «xp,rlp) E Z)

for which lixp - xII = '!lin(llxi - xII). Then x is assignedI-l...k

class rlp, that is F(x)=~.

3. In the case when there is more than one vector xp
for which the above condition of minimum distance is
met, the c\assifier generates the decision: "unknown".
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h1j=a(,,\,1I wL-lixm), i=1....L...m~l .
n- dimension ofthe input vector
k- dimension ofthe output vector
kl'" kL_1 - number ofneurons in the particular
hidden layers of neural networks
rr - function of neuron activation, usually in the
form of a selected sigmoidal form:

l
aCh) = -2fJh or aCh) = tanh(,Bh);

l+e

The weights w;,) are determined in the
minimization process using the algorithm of gradient
descent, a selected criterion function, usually it is [4]:

E(w)= f I:JF(xl) -d, II,
where: (Xl>dDE l,N - a power of set l.
w - vector of all weights Wjj

11.[[ - selected metric (differentable).

The above error measurement is a continuous and
differentiable function of all weights, that is why we
can apply the gradient dec end algorithm. Modification
of the weights at a random step of the iterative
algorithm is given as [4]:

ćJE
L\w..=-7]--

I,J iW ..
I,J

where:
11 -constant higher than zero

NEFCLASS (NEuro-Fuzzy CLASSification) [7]

A neuro-fuzzy system is usuaJly a fuzzy system
that uses a leaming algorithm which is derived from



the neural network theory. The changes computed by
the leaming algorithm are based on local information
only, and the changes are also carried out locally. The
fuzzy system is usually viewed as a special 3-layer
feed-forward network architecture, where the units of
the second layer represent the fuzzy rules. The fuzzy
sets are represented as fuzzy weights on the
connections from the input to the hidden layer.
NEFCLASS is used to derive fuzzy rules from a set of
data that can be separated in different crisp classes.
The fuzzy rules deseribing the data are ofthe form:

if XI is !lI and X2is !l2 and ... and x, is u, then the
pattem [XI""'Xn] belongs to class i, where
[,ul, ... ,,un] are the fuzzy sets. The task of the
NEFCLASS model is to discover these rules and to
leam the shape of the membership functions to
determine the correct cIass category of a given input
pattem. The leaming algorithm for NEFCLASS is
described completely in [8]. In the following part we
will only give a short overview:

• Initialization: For each feature there is an input
unit, and for each class there is one output unit.
For each input unit an initial fuzzy partitioning is
specified (e.g. a num ber of equally distributed
triangular membership functions).

• Rule Learning: NEFCLASS starts without rules,
and inserts fuzzy rules into the system during a
first run through the training data. In a second run
the rules are evaluated, and only the best r rules
are kept, where r is given by the user. It is also
possible to keep the best rules class.

• Fuzzy Set Learning : For training of the
membership function a backpropagation schema is
used. Depending on the output error for each rule
unit a decision is made, whether the activation
value has to be high er or lower. Each rule unit then
changes its membership functions by changing
their support. The user can specify several
constraints so that the changes of the membership
functions do not change the semantics of the
underlying fuzzy model.

The experiment

A generał schema of echo signal envelope
classifications can be defined as the following
mapping assumptions:

qa,b]~Rn~D
where:

Cfa, b] - space of continuous functions in the
range [a,b] with values in R (includes in a
natural way all the envelopes of signals reflected
from the bottom)

t, - task ofmapping C[a,b] in R",
F, - selected classifier
D= (rock, sand, sand, mud).- set of classes of
bottom types

The paper presents tests for three selected
mappings ip, and for the minimum-distance,
NEFCLASS and neural networks classifiers described
earlier. The cIassifiers were trained consecutively for
ten training sets BI.p ... BJO.pobtained from a basis of
the given envelopes and were then tested on a set Blp,
maximai in terms of its power. The percentage of
correct decisions for each c1assifier has been
iIIustrated in the diagram for each stage of the
experiment. Sets Bj.pwere constructed as follows:.

l. From a set of 7428 envelopes of the first echo,
subsets {Al'" AJO}were selected respectively of 3714
envelopes 2476, 1857, 1485, 1238, 1061, 928, 825,
742 and 372 envelopes. While sets {Ai}i=LIO did not
constitute a declining family due to the containing
relation that is. "". V (Aj C Ai) V (Ai C Aj)

',J;''''J

2. Sets that were defined in this way {AJi=LIO were
made subject to selected transformations ip so that for
each i Bi,p=iiAj) which created a data base for the
particular stages of the experiment (sets Bi,p aiso do
not form a declining famiły).

For the sake of the paper the domain of each
c1assifier (and the mapping range ip) will be called the
input space respectively of: parameters, sampies and
coefficients

I. Tests of classifiers for parameters' space
(A,El,E2,DFR,V)

In this stage of the experiment mapping ip (p=l) was
given in the following way:

f E C[a,b]. ilf)=(A,El,E2,DFR, V) E K

where:
A = max (f(x)) - amplitude of envelope f

xe{a,h]

El = f f(x)2 dx bottom hardness coefficient [l]

E2 = f. f(x)2 dx bottom roughness coefficient [1],

where tl is a point such that: f(tj) = A

In(N f (As))
DFR= lim - - fractal dimension ofthe

ós~o In(As)
envelope
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where N(8s) - power of covering the envelope
with squares at a side of 8s [3].

Vb(J)
V = -Q-- ; - relation between envelope saltus and

(b-a)
range length [a,b].
where:

V;(f) = lim "'" If(xi) - f(xi-t)1
0"--.0 Lo.

i=t..n
c - radius of division: a = x ,:5;x ,:5;x,:5;...:5;xn_,:5;
xn=b section [a,b]

In this given param eter space, a partial division
of class D of echo envelope was observed (see Fig. 1),
which led to the conclusion that the decisions made by
the minimum-distance classifier should be sufficient
in the task ofbottom type recognition.

v +ROCK
"SAND
OSSAND
msMUD

..

DFR

Figure t. Projection ofset B6.1 over subspace ofparameters
(DFR,V)

Results of simulation for i" have been presented
in the form of diagrams in Fig. 2 i Fig. 3. The visible
"oscillations" of the diagram (especially in the case of
the minimum-distance classifier) were caused by the
fact that the training sets {Bi,ph=1...1O were not a
dec lining fam iły. However, the size ofthe osciIlations
provides additional information about how the quality
of classification is dependent on the selection of the
learning data. To estimate it what was calculated was
the saltus V,~ooof diagrams ofthe obtained diagrams:

rnin-dist neural net NEFCLASSI

vlOO 22.3 14.35 52.3 I10

Table I. Saltus of effectiveness diagrams ofthe analyzed classifiers
for t,

To be less precise, the saltus represents the
number and size of diagram "oscillations", the high er
the saltus, the higher the "oscillations" are. The results
from Table 1 undoubtedly speak for the benefit of the
neural network.
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It is also worth noticing that the slight advantage
of the minimum-distance classifier for big powers of
the leaming sets (see Fig. 2) can be misleading. It is
known for a fact that the classifier on a training set
always reaches 100% of correct decisions while it is
difficult to perform approximation (as is the case with
NEFFCLASS and the neural network) with an error
small enough to come up with a result just as good.

In the course of learning the neural network the
topology of the network was observed to have had a
slight effect on the generalization effectiveness. Fig. 2
presents the results for the architecture with two
hidden layers that contain respectively 5 and 4
neurons.

The test for the NEFCLASS classifier was not
very successful. That was caused by the fact that for
bigger training sets, the training of a cłassifier failed
even though a big num ber of possible topologies were
tested. A satisfactorily smali error was obtained only
in the case of sets BlO.1i B9" and in these cases (see
Fig. 3 beginning of diagram) the quality of the
classification is good.

-Min-dis! -NN

100 T'I. ot correct
96 - dectstona

96
94
92
90
88
86
84
82 .

60
Bi,1/B1,1[%]

....- ----+---

50 7010 30 90

Figurę 2. Percentage of correct decisions for neural network and
the minimum-distance classifier depending on the size of the

learning set for test I.

In general the results ofthe simulation confirmed
earlier projections. The examined classes of sea
bottom in the tested param eter space using Euclidean
distance are wełl separabIe through the minimum-
distance classifier. BasicaIIy it is sufficient for the
purpose of this task. Even though the neural network
is slightly less effective, this cJassifier seems to be less
dependent on the choice of training data which makes
it more useful in the c1assification systems of bottom
sediments. The NEFCLASS cJassifier is clearly unable
to handle the increasing training in spite of the
promising tests for sets Bo,1i 89,1'
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Figure 3. Percentage of correct decisions for the NEFCLASS
classifier depending on the size of the leaming set, for test I.

II. Tests for classifiers for a space of 50 sam pIes of
the envelopes

Mapping ip (p=2) has been defined as foIlows:

f E Cfa.b], Mf)=(xj, ..., X5aJ EKG
where:

V xi+1 = f(a + i b - a),
i 49

The purpose of the test was to check the
behavior of classifiers for a case when the input space
is of a large size and the signal envelope was only
sampled.

For a space of sampies defined in this way, high
effectiveness of the minimum-distance classifier as
well as of the neural network c1assifier was observed
(see Fig. 4). What might seem surprising is the high
performance of the first one. What it means, however,
is that the classes of bottom sediments can be easily
separated in the space in question. In the case of the
NEFCLASS classifier the leaming proces s did not
succeed (see Fig. 5) for none of the training sets. It
undermines the usefulness of this classifier in those
cases where its domain is a high dimension space.

By analogy to test I the saltus of the diagrams of
the obtained relations was calculated:

i = 0.. .49.

min-dist neural net NEFCLAS
S

vlOO 15.3 13.2 35.0
10

Table 2. Saltus of effectiveness diagrams of the analyzed classifiers
for i]

AIso in this case the neural network tumed out to
be a classifier that is less dependent on the selection of
training data when compared to the minimum-distance
classifier. Comments about the topology of the tested
networks are similar to what they were in the first
stage of the experiment. Fig. 4 illustrates the results

for the architecture with three hidden layers
containing respectively 20, 10 and 8 neurons.
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Figure 4. Percentage of correct decisions for a neural network and
the minimum-distance classifier depending on the size of the

leaming set, for test II.

The general effectiveness of recognition of the
first two c1assifiers is in this case higher than in test
one. It is a direct consequence of a smaller reduction
of information upon the usage of transformation i2
instead of ij.

-o-NEFCLASS
%otcorrect

ill __~ -I- __ ' Bi,2/B1,2 [o/~

10 30 50 70 90

Figure 5. Percentage of correct decisions for the NEFCLASS
classifier depending on the size of the learning set, for test II.

III. Tests for c1assifiers for a space of Fourier's
coefficients

The purpose of the last test was to show that the
minimum-distance classifier cannot always effectively
separate the input space In this stage of the experiment
the NEFCLASS classifier was not analyzed because
the initial results tumed out to be similar to those
coming from previous tests ..
This time ip (p=3) was defined as:
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where:

\f x, =1_1_ (' !(t)e-)(J)(;-I)'dtl,
I b-a J,

2"
ll)=--

b-a

min-dist neural net

VlOO 63.6 24.3io
Table 3. Saltus of effectiveness diagrams ofthe analyzed classifiers

for ts

The diagram obtained in Fig. 6 is a proof of the
minimum-distance classifier's poor ability to
generalize in the analyzed input space. The percentage
of correct decisions for the entire set given the low
powers of the training sets, ranges from 50-60%
which is not a satisfactory result. Also the relatively
high saltus of the diagram (see Table 3) is a proof of a
higher dependency of the minirnum-distance classifier
on the iearning data. Contrary to that the effectiveness
of the neura! network is comparab!e to the previous
tests. The results iIlustrated in Fig. 6 were obtained for
a two layer network of 8 and 10 neurons in the
respective hidden !ayers.
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Figure 6. Percentage of correct decisions for the neural network
and the minimum-distance c1assifier depending on the size ofthe

leaming set, for test II.

Conclusions

The experiment showed that the neural network
is an effective classifier for the task of recognition the
types of bottom sediments. This classifier also assures
a satisfactory extrapolation of test sets.

Also the minimal-distance classifier was proved
as an effective in the first two experiments and seems
to be sufficient especially when the input space is a
param eter space.

In the case of the NEFCLASS system, the only
positive effect is the result for leaming sets BIO.1and
B9.l> in the other cases the process of training the
c1assifier was not successful.
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Good results of the simulation (Ieaving out the
NEFCLASS classifier) for a 50 dimensional space of
sampled envelopes could provide sufficient evidence
that parametrization of the envelope is not necessary.
This holds true especially because the topology of the
tested neural networks is simple enough to allow a
computation of the network in real time. The
simplicity of the computation makes it a practically
attractive tool.
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