HYDROACOUSTICS
ANNUAL JOURNAL
START NEW VOL 19 SEARCH STATISTICS PAS - GDANSK DIVISION

Methods for quality improvement of multibeam and LiDAR point cloud data in the context of 3D surface reconstruction

pp. 251-258, vol. 19, 2016

Marek Kulawiak
Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Geoinformatics, Poland

Zbigniew Ɓubniewski
Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Geoinformatics, Poland

Key words: multibeam sonar; LiDAR; 3D; point cloud; shape reconstruction, noise reduction

Abstract: Point cloud dataset is the transitional data model used in several marine and land remote-sensing applications. During further steps of processing, the transformation of point cloud spatial data to more complex models containing higher order geometric structures like edges and facets may be possible, if an appropriate quality level of input data is provided. Point cloud datasets usually contain a considerable amount of undesirable irregularities, such as strong variability of local point density, missing data, overlapping points and noise caused by scattering characteristics of the environment. For these reasons, processing such data can be quite problematic, especially in the field of object detection and three-dimensional surface reconstruction. This paper is focused on applying the proposed methods for reducing the mentioned irregularities from several datasets containing 3D point clouds acquired by multibeam sonars and LiDAR scanners. The article also presents the results obtained by each method, and discusses their advantages.

Download: Fulltext PDF, BibTeX

© Polish Acoustical Society - Gdansk Department, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported. (CC BY-NC-SA 3.0)